测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 73-77.doi: 10.13474/j.cnki.11-2246.2025.0613

• 学术研究 • 上一篇    

基于白化着色的沉船和失事飞机风格迁移方法

闫白羽1, 翟国君2, 边少锋3   

  1. 1. 中国地质大学(武汉)地理信息与工程学院, 湖北 武汉 430070;
    2. 中国地质大学(武汉)地质探测与评估教育部重点实验室, 湖北 武汉 430074;
    3. 海军工程大学, 湖北 武汉 430033
  • 收稿日期:2024-10-29 发布日期:2025-07-04
  • 作者简介:闫白羽(1999—),男,硕士,主要从事侧扫声呐图像分类研究。E-mail:1043494739@qq.com
  • 基金资助:
    国家自然科学基金(42374050;42430101)

A style transfer method for shipwrecks and crashed aircraft based on whitening and coloring transformation

YAN Baiyu1, ZHAI Guojun2, BIAN Shaofeng3   

  1. 1. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430070, China;
    2. Key Laboratory of Geological Exploration and Evaluation of Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China;
    3. Naval University of Engineering, Wuhan 430033, China
  • Received:2024-10-29 Published:2025-07-04

摘要: 深度学习算法在图像分类领域中得到广泛应用,但由于包含目标的侧扫声呐图像数据较少,难以满足深度学习算法的训练需求,会导致过拟合等问题。风格迁移是扩充训练样本的有效方法之一。本文对WCT、PhotoWCT风格迁移算法的迭代过程进行研究和重建,根据Unpooling和Upsampling的特性对WCT算法在解码器不同特征层上进行了适当改进,编写了更适用于侧扫声呐图像的WCST风格迁移算法。通过WCST算法生成了逼真的含目标伪侧扫声呐图像,满足了图像分类网络的训练要求。在图像分类试验中分别用WCST、PhotoWCT生成的图像集作为训练集对ResNet50进行训练,并用真实侧扫声呐图像验证。在图像分类的各项精度上WCST算法均为最佳,证明了其在扩充侧扫声呐图像训练集方面的高效性和优越性。

关键词: 风格迁移, 侧扫声呐图像, 深度学习, 图像分类

Abstract: Deep learning algorithms have been widely applied in the field of image classification. However, the limited availability of side-scan sonar images containing target objects poses a significant challenge in meeting the training demands of these algorithms, often leading to issues like overfitting. Style transfer has emerged as an effective method for augmenting training samples. This paper investigates and reconstructs the iterative processes of the WCT and PhotoWCT style transfer algorithms. Based on the characteristics of Unpooling and Upsampling, we propose modifications to the WCT algorithm across different feature layers of the decoder, resulting in the development of the WCST style transfer algorithm, which is more suited for side-scan sonar imagery.Using the WCST algorithm, realistic pseudo side-scan sonar images containing target objects were generated to meet the training requirements of image classification networks. In subsequent image classification experiments, datasets generated by WCST and PhotoWCT were used to train ResNet50. The results demonstrated that WCST outperformed the other methods in all accuracy metrics, highlighting its effectiveness in augmenting high-quality training sets for side-scan sonar image classification.

Key words: style transfer, side-scan sonar images, deep learning, image classification

中图分类号: