测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 100-107.doi: 10.13474/j.cnki.11-2246.2026.0116

• 学术研究 • 上一篇    下一篇

面向航空影像跨域语义分割的测试时自适应方法

罗惠恒1, 杨磊1, 文凡1, 胡金艳1, 王海羽1, 李卓建2, 高琛2   

  1. 1. 中国长江三峡集团有限公司, 湖北 武汉 430014;
    2. 三峡金沙江云川水电开发有限公司, 云南 昆明 650224
  • 收稿日期:2025-11-12 发布日期:2026-02-03
  • 作者简介:罗惠恒(1979—),男,硕士,主要从事流域大数据方面的工作。E-mail:luo_huiheng@ctg.com.cn
  • 基金资助:
    三峡金沙江云川水电开发有限公司禄劝乌东德电厂资助项目(Z522402008)

Adaptive testing method for cross domain semantic segmentation of aerial images

LUO Huiheng1, YANG Lei1, WEN Fan1, HU Jinyan1, WANG Haiyu1, LI Zhuojian2, GAO Chen2   

  1. 1. China Three Gorges Corporation, Wuhan 430014, China;
    2. Three Gorges Jinsha River Yunchuan Hydropower Development Co., Ltd., Kunming 650224, China
  • Received:2025-11-12 Published:2026-02-03

摘要: 针对遥感图像目标域训练数据难以获取,且在测试阶段无法进行完整无监督域适应训练,从而导致模型精度下降的问题,本文提出了一种用于航空遥感影像跨域语义分割的测试时自适应方法。该方法基于教师-学生网络框架,引入空间一致性约束与高置信度伪标签机制,在无需源域数据与标注的情况下,实现模型在目标域上的实时持续优化。试验结果表明,在航空遥感影像跨波段场景中,本文方法在目标域上的模型IoU由27.51%提升至42.63%,性能显著优于其他对比方法。此外,与DRDG(depth-assisted resi-DualGAN)方法结合构建多阶段自适应框架后,IoU可进一步提高5%以上。本文方法在航空遥感影像跨域语义分割中具有优越的跨域适应能力,同时在复杂跨域场景中表现出良好的扩展性、有效性与稳健性。

关键词: 航空语义分割, 无监督域适应, 测试时自适应, 迁移学习

Abstract: To address the issue of limited availability of training data in the target domain for remote sensing images and the inability to perform complete unsupervised domain adaptation during testing,which leads to decreased model accuracy,this paper proposes a test-time adaptation technique for cross-domain semantic segmentation of aerial remote sensing images.Based on a teacher-student network framework,the method introduces spatial consistency constraints and a high-confidence pseudo-labeling mechanism,enabling real-time and continuous model optimization in the target domain without requiring source domain data or annotations.Experimental results demonstrate the superior cross-domain adaptation capability of the proposed method in cross-band scenarios of aerial remote sensing imagery.On the target domain,the model's IoU increased from 27.51% to 42.63%,significantly outperforming comparative methods.Furthermore,the method exhibits strong extensibility and can be integrated with the DRDG (depth-assisted resi-DualGAN) approach to construct a multi-stage adaptive framework,which further improves IoU by over 5%.The proposed method demonstrates excellent cross-domain adaptation capability for aerial remote sensing image semantic segmentation,along with strong extensibility,effectiveness,and robustness in complex cross-domain scenarios.

Key words: aviation semantic segmentation, unsupervised domain adaptation, test-time adaptation, transfer learning

中图分类号: