[1] MA Lingfei,LI Ying,LI J,et al. Mobile laser scanned point-clouds for road object detection and extraction: a review[J]. Remote Sensing,2018,10(10): 1531. [2] 王羽尘,于斌,陈晓阳,等. 基于激光雷达点云的道路几何信息提取与数字化建模研究[J]. 中国公路学报,2023,36(3):45-60. [3] 惠振阳,胡友健,康妍斐. 基于反射强度偏度平衡的道路点云提取算法[J]. 激光与光电子学进展,2018,55(2):439-445. [4] ZHANG Wuming,QI Jianbo,WAN Peng,et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing,2016,8(6):501. [5] 方莉娜,杨必胜. 车载激光扫描数据的结构化道路自动提取方法[J]. 测绘学报,2013,42(2):260-267. [6] 胡啸,黄明,周海霞. 车载激光扫描数据的高速道路自动提取方法[J]. 测绘科学,2019,44(3):101-106. [7] 卢健,贾旭瑞,周健,等. 基于深度学习的三维点云分割综述[J]. 控制与决策,2023,38(3):595-611. [8] SU Hang,MAJI S,KALOGERAKIS E,et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago:IEEE,2015:945-953. [9] MENG H Y,GAO Lin,LAI Yukun,et al. VV-net:voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seou:IEEE,2019:8500-8508. [10] MATURANA D,SCHERER S. VoxNet:a 3D Convolutional Neural Network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Hamburg:IEEE,922-928. [11] BOULCH A,GUERRY J,LE SAUX B,et al. SnapNet:3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics,2018,71:189-198. [12] CHARLES R Q,HAO Su,MO Kaichun,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE,2017:652-660. [13] 杨晓文,王爱兵,韩燮,等. 基于KNN-PointNet的点云语义分割[J]. 激光与光电子学进展,2021,58(24):272-279. [14] QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM,2017:5105-5114. [15] XU Mutian,DING Runyu,ZHAO Hengshuang,et al. PAConv:position adaptive convolution with dynamic kernel assembling on point clouds[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville:IEEE,2021:3173-3182. [16] 焦晨,王宝锋,易耀华. 点云数据滤波算法研究[J]. 国外电子测量技术,2019,38(11):18-22. [17] DESCHAUD J E,DUQUE D,RICHA J P,et al. Paris-CARLA-3D:a real and synthetic outdoor point cloud dataset for challenging tasks in 3D mapping[J]. Remote Sensing,2021,13(22):4713. [18] 冉妮妮. 城市结构化道路路面点云提取方法研究[J]. 测绘技术装备,2022,24(1):57-61. [19] 管郡智,潘卫清. 基于多区域RANSAC的地面点云提取算法[J]. 电子技术与软件工程,2020(14):176-177. |