[1] 陈锐志,钱隆,牛晓光,等. 基于数据与模型双驱动的音频/惯性传感器耦合定位方法[J]. 测绘学报,2022,51(7):1160-1171. [2] ZHOU Baoding,WU Zhiqian,CHEN Zhipeng,et al. Wi-Fi RTT/encoder/INS-based robot indoor localization using smartphones[J]. IEEE Transactions on Vehicular Technology,2023,72(5): 6683-6694. [3] YU Yue,CHEN Ruizhi,SHI Wenzhong,et al. Precise 3D indoor localization and trajectory optimization based on sparse Wi-Fi FTM anchors and built-in sensors[J]. IEEE Transactions on Vehicular Technology,2022,71(4): 4042-4056. [4] YAN Shuo,LUO Haiyong,ZHAO Fang,et al. Wi-Fi RTT based indoor positioning with dynamic weighted multidimensional scaling[C]//Proceedings of 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Pisa: IEEE,2019: 1-8. [5] GENTNER C,ULMSCHNEIDER M,KUEHNER I,et al. WiFi-RTT indoor positioning[C]//Proceedings of 2020 IEEE/ION Position,Location and Navigation Symposium (PLANS). Portland: IEEE,2020: 1029-1035. [6] LIU Xu,ZHOU Baoding,HUANG Panpan,et al. Kalman filter-based data fusion of Wi-Fi RTT and PDR for indoor localization[J]. IEEE Sensors Journal,2021,21(6): 8479-8490. [7] GADALETA M,ROSSI M. IDNet: smartphone-based gait recognition with convolutional neural networks[J]. Pattern Recognition,2018,74: 25-37. [8] YAN Hang,SHAN Qi,FURUKAWA Y. RIDI: robust IMU double integration[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer,2018: 641-656. [9] CHEN Changhao,LU Xiaoxuan,MARKHAM A,et al. IONet: learning to cure the curse of drift in inertial odometry[C]//Proceedings of 2018 International Conference on Artificial Intelligence(ICAI).New Orleans:[s.n.],2018. [10] HERATH S,YAN Hang,FURUKAWA Y. RoNIN: robust neural inertial navigation in the wild: benchmark,evaluations,& new methods[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE,2020: 3146-3152. [11] LIU Wenxin,CARUSO D,ILG E,et al. TLIO: tight learned inertial odometry[J]. IEEE Robotics and Automation Letters,2020,5(4): 5653-5660. [12] IBRAHIM M,LIU Hansi,JAWAHAR M,et al. Verification: accuracy evaluation of Wi-Fi fine time measurements on an open platform[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New Delhi India: ACM Press,2018. [13] ZHOU Baoding,YANG Jun,LI Qingquan. Smartphone-based activity recognition for indoor localization using a convolutional neural network[J]. Sensors,2019,19(3): 621. [14] MELAMUD O,GOLDBERGER J,DAGAN I. Context2vec: learning generic context embedding with bidirectional LSTM[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin: Association for Computational Linguistics,2016. [15] HE Jingjing,SUN Changku,ZHANG Baoshang,et al. Adaptive error-state Kalman filter for attitude determination on a moving platform[J]. IEEE Transactions on Instrumentation and Measurement,1971,70: 9513110. [16] GARCÍA-FERNÁNDEZ Á F,SVENSSON L,SÄRKKÄ S. Iterated posterior linearization smoother[J]. IEEE Transactions on Automatic Control,2017,62(4): 2056-2063. [17] YAN Shaohu,ZHUO Yongning,WU Shiqi. An adaptive RTS threshold adjust algorithm based on minimum energy consumption in IEEE 802.11 DCF[C]//Proceedings of 2003 International Conference on Communication Technology Proceedings,2003. ICCT. Beijing: IEEE,2003: 1210-1214. [18] HESCH J A,KOTTAS D G,BOWMAN S L,et al. Camera-IMU-based localization: observability analysis and consistency improvement[J]. International Journal of Robotics Research,2014,33(1): 182-201. [19] HE Yijia,ZHAO Ji,GUO Yue,et al. PL-VIO: tightly-coupled monocular visual-inertial odometry using point and line features[J]. Sensors,2018,18(4): 1159. |