测绘通报 ›› 2019, Vol. 0 ›› Issue (6): 66-70.doi: 10.13474/j.cnki.11-2246.2019.0186

• 学术研究 • 上一篇    下一篇

顾及地理语境的旅游轨迹停留点语义标注

范海林1, 梁明2, 李佳3, 段平3, 王姗姗2, 王彤2   

  1. 1. 广东绘宇智能勘测科技有限公司, 广东 广州 510665;
    2. 安徽大学资源与环境工程学院, 安徽 合肥 230601;
    3. 云南师范大学旅游与地理科学学院, 云南 昆明 650500
  • 收稿日期:2018-08-13 出版日期:2019-06-25 发布日期:2019-07-01
  • 通讯作者: 梁明。E-mail:lming@mail.ccnu.edu.cn E-mail:lming@mail.ccnu.edu.cn
  • 作者简介:范海林(1970-),男,高级工程师,主要从事卫星大数据接收、大数据处理、应用服务等方面研究。E-mail:fanhl@huiyugz.com.cn
  • 基金资助:

    国家自然科学基金(41602173;41771188);安徽省自然科学基金(1908085QD164);安徽省国土厅科技项目(2016-K-12)

Semantic annotation of travel trail stay points considering geographical context

FAN Hailin1, LIANG Ming2, LI Jia3, DUAN Ping3, WANG Shanshan2, WANG Tong2   

  1. 1. Guangdong Huiyu Zhineng Kance Technology Co., Ltd., Guangzhou 510665, China;
    2. Anhui University, Hefei 230601, China;
    3. Yunnan Normal University, Kunming 650500, China
  • Received:2018-08-13 Online:2019-06-25 Published:2019-07-01

摘要:

轨迹数据作为典型的时空大数据,具有较高的研究和应用价值。然而现有的轨迹数据挖掘主要聚焦于轨迹的空间特征,而较少关注轨迹数据语义的深度分析。本文面向智慧旅游服务的需求,重点探讨了旅游轨迹的轨迹停留点语义的自动标注问题。首先,针对POI短文本的特点,提出了基于《同义词词林》进行短文本语义扩展的方法对POI短文本进行特征扩展;同时,在顾及POI短文本的关键词集中、类别词分散等特征基础上,提出了改进TF-IDF的POI自动分类方法;其次,在POI分类的基础上,采用Native Bayes方法对轨迹停留点进行语义标注。结果表明,基于改进TF-IDF方法的POI自动分类可以达到约83%的精度,能够较好地实现POI的分类;而在POI自动分类基础上,基于Native Bayes的轨迹语义标注可以达到74%的精度,较好地实现了旅游轨迹停留点自动语义标注的目标。

关键词: 语义标注, 旅游轨迹, 停留点, POI分类, 特征扩展

Abstract:

As a typical space-time big data, trajectory data has high research and application value. However, the existing trajectory data mining mainly focuses on the spatial features of the trajectory, and less on the depth analysis of the trajectory data semantics. This paper is oriented to the demand of smart travel service, aiming at the semantic annotation of the track stop point, focusing on the automatic labeling problem of the track stay point semantics of the travel track. Firstly, aiming at the characteristics of short text of POI, this paper proposes a method of semantic extension of short text based on "synonym word forest" to extend the feature of POI short text. At the same time, it takes into account the feature set of POI short text and the distribution of category words. In this paper, the POI automatic classification method for improving TF-IDF is proposed. Secondly, based on the POI classification, the Native Bayes method is used to semantically mark the track stay points. The results show that the automatic classification of POI based on the improved TF-IDF method can achieve about 83% accuracy, which can better realize the classification of POI. On the basis of automatic classification of POI, the trajectory semantic annotation based on Native Bayes can reach 74%. The accuracy of the target is automatically achieved by the automatic semantic annotation of the travel track stay point.

Key words: semantic annotation, travel track, stay point, POI classification, feature extension

中图分类号: