[1] SU T, YANG M. Application of morphological segmentation to leaking defect detection in sewer pipelines[J]. Sensors, 2014(14):8686-8704. [2] HAWARI A, ALAMIN M, ALKADOUR F, et al. Automated defect detection tool for closed circuit television (cctv) inspected sewer pipelines[J]. Automation in Construction, 2018(89):99-109. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//Annual Conference on Neural Information Processing Systems. Lake Tahoe:[s.n.], 2012:1097-1105. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington, D C:IEEE, 2014:580-587. [5] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [6] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//IEEE International Conference on Computer Vision. Santiago:IEEE, 2015:4489-4497. [7] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time-series[C]//The Handbook of Brain Theory and Neural Networks. Cambrideg:The MIT Press, 1995. [8] FUKUSHIMA K. Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202. [9] WERBOS P J. Beyond regression:new tools for prediction and analysis in the behavioral sciences[D]. Harvard:Harvard University, 1975. [10] FERGUSON T. An inconsistent maximum likelihood estimate[J]. Journal of the American Statistical Association, 1982, 77(380):831-834. [11] KINGMA D, BA J. Adam:a method for stochastic optimization[C]//International Conference on Learning Representation. San Diego:[s.n.], 2015. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representation. Banff, Canada:[s.n.], 2014. [13] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//International Conference on Artificial Intelligence and Statistics. Fort Lauderdale:[s.n.], 2011:315-323. [14] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:248-255. [15] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM, 2014. |