[1] SINGH A.Review article digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing, 1989, 10(6): 989-1003. [2] 眭海刚,冯文卿,李文卓,等.多时相遥感影像变化检测方法综述[J].武汉大学学报(信息科学版),2018,43(12): 1885-1898. [3] 张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报,2017,46(10): 1447-1459. [4] CAYE DAUDT R,LE SAUX B,BOULCH A.Fully convolutional Siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing.Greece: IEEE,2018: 4063-4067. [5] PENG Daifeng,ZHANG Yongjun,GUAN Haiyan.End-to-end change detection for high resolution satellite images using improved UNet++[J].Remote Sensing,2019,11(11): 1382. [6] CHEN Hao,SHI Zhenwei.A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J].Remote Sensing,2020,12(10): 1662. [7] CHEN Hao,QI Zipeng,SHI Zhenwei.Remote sensing image change detection with transformers[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60: 1-14. [8] 田青林,秦凯,陈俊,等.基于注意力金字塔网络的航空影像建筑物变化检测[J].光学学报,2020,40(21):47-56. [9] CHEN01 Jieneng,LU Yongyi,YU Qihang,et al.TransUNet: transformers make strong encoders for medical image segmentation[EB/OL].[2022-02-01].https://arxiv.org/abs/2102.04306. [10] CHEN Kaiqiang,FU Kun,GAO Xin,et al.Building extraction from remote sensing images with deep learning in a supervised manner[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium.Fort Worth:IEEE,2017: 1672-1675. [11] RONNEBERGER O,FISCHER P,BROX T.U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science.Cham: Springer International Publishing,2015: 234-241. [12] BROMLEY J,GUYON I,LECUN Y,et al.Signature verification using a “Siamese” time delay neural network[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems.New York: ACM,1993: 737-744. [13] 向阳,赵银娣,董霁红.基于改进UNet孪生网络的遥感影像矿区变化检测[J].煤炭学报,2019,44(12): 3773-3780. [14] 倪良波,卢涵宇,卢天健,等.基于孪生残差神经网络的遥感影像变化检测[J].计算机工程与设计,2020,41(12):3451-3457. [15] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words: transformers for image recognition at scale[EB/OL].2020: arXiv: 2010.11929.https://arxiv.org/abs/2010.11929. |