测绘通报 ›› 2023, Vol. 0 ›› Issue (6): 44-49.doi: 10.13474/j.cnki.11-2246.2023.0166

• 学术研究 • 上一篇    下一篇

利用Sentinel-2遥感影像分析水葫芦时空分布规律

王冬梅1, 吴勇锋1, 石一凡1, 梁文广1, 王轶虹1, 潘思远2   

  1. 1. 江苏省水利科学研究院, 江苏 南京 210017;
    2. 河海大学农业科学与工程学院, 江苏 南京 210024
  • 收稿日期:2022-07-28 发布日期:2023-07-05
  • 通讯作者: 吴勇锋。E-mail:yongfengwu1995@163.com
  • 作者简介:王冬梅(1978-),女,硕士,研究员级高级工程师,主要从事河湖空间变化相关研究。E-mail:17290559@qq.com
  • 基金资助:
    江苏省水利科技项目(2021072;2020039;2019049);自主科研项目(2020z025;2022z031)

Analyzing the spatio-temporal distribution of Eichhornia crassipes based on Sentinel-2 remote sensing

WANG Dongmei1, WU Yongfeng1, SHI Yifan1, LIANG Wenguang1, WANG Yihong1, PAN Siyuan2   

  1. 1. Jiangsu Provincial Institute of Water Conservancy Sciences, Nanjing 210017, China;
    2. School of Agricultural Science and Engineering, Hohai University, Nanjing 210024, China
  • Received:2022-07-28 Published:2023-07-05

摘要: 水葫芦大面积暴发会对河湖防洪、供水安全,水生态造成重要影响。本文以江苏省里下河地区为研究区,采用Sentinel-2影像数据对比分析3种机器学习算法分类精度,利用最佳分类方法提取2017—2021年多期影像中的水葫芦,分析研究区水葫芦暴发年际特征及其扩散趋势。结果表明,基于支持向量机(SVM)的分类效果优于神经网络(NN)和随机森林(RF)(总体精度为84.81%~94.30%,Kappa系数为0.70~0.89);2017—2021年水葫芦面积整体呈先增后减趋势,其中,2019年水葫芦暴发达到峰值,暴发热点主要集中在阜宁县南部、宝应县中部及兴化市南部地区等行政交界和水网密集处。兴化、宝应、高邮、江都、阜宁五区县年均水葫芦面积在3 km2以上,其中兴化市年均水葫芦暴发最为频繁,面积达6.85 km2

关键词: 遥感, 水葫芦, Sentinel-2, 支持向量机, 里下河地区, 时空分布

Abstract: The large-scale outbreak of Eichhornia crassipes dramatically influence river and lake flood control, water supply security, and water ecology. In this study, the Lixia River area of Jiangsu province is chosen as the research area. We applied the Sentinel-2 image data to filter the optimal classification method of Eichhornia crassipes by compare and analyze the classification accuracy of three machine learning algorithms. Then, analysis the inter-annual spatio-temporal (2017—2021) characteristics and their spreading trends of Eichhornia crassipes by inversion of remote sensing data. The results showed that, the classification performance based on support vector machine (SVM) (overall accuracy is 84.81%~94.30%, Kappa coefficient is 0.70~0.89) is better than neural network (NN) and random forest (RF), The annual outbreak area of Eichhornia crassipes showed a trend of “increase and then decrease” from 2017 to 2021, the outbreak area of Eichhornia crassipes reached its peak in 2019. The outbreak hotspots are mainly located in the junctions of administrative region and dense water networks,such as southern Funing county, central Baoying county, and southern Xinghua city. The average Eichhornia crassipes area during 2017—2021 in the five districts and counties of Xinghua, Baoying, Gaoyou, Jiangdu, and Funing is above 3 km2. Especially, the annual average Eichhornia crassipes outbreak in Xinghua is the most frequent, with an area of 6.85 km2.

Key words: remote sensing, Eichhornia crassipes, Sentinel-2, support vector machine, Lixia River area, spatio-temporal distribution

中图分类号: