测绘通报 ›› 2023, Vol. 0 ›› Issue (10): 34-39,66.doi: 10.13474/j.cnki.11-2246.2023.0292

• 学术研究 • 上一篇    下一篇

面向无人平台的视觉空间关系模型

皇甫润南1, 田江鹏1, 游雄1, 屠铱成2   

  1. 1. 信息工程大学, 河南 郑州 450052;
    2. 61175部队, 江苏 南京 210046
  • 收稿日期:2023-01-03 发布日期:2023-10-28
  • 通讯作者: 田江鹏。E-mail:tjpeng2011@163.com
  • 作者简介:皇甫润南(1998-),男,硕士生,主要从事机器地图建模关键技术研究。E-mail:hfrn1998@163.com
  • 基金资助:
    国家自然科学基金重点项目(42130112)

Visual spatial relationship model for unmanned platform

HUANGFU Runnan1, TIAN Jiangpeng1, YOU Xiong1, TU Yicheng2   

  1. 1. Information Engineering University, Zhengzhou 450052, China;
    2. Troops 61175, Nanjing 210046, China
  • Received:2023-01-03 Published:2023-10-28

摘要: 视觉空间关系是指通过视觉传感器获得的空间关系。当认知主体由人转变为无人平台时,显式地描述与记录空间关系是无人平台实现场景理解和空间推理的关键。本文聚焦无人平台视觉空间关系模型缺失现状,将地图学和机器视觉中关于空间关系的分类、模型和算法进行融合,提出了一种面向无人平台的视觉空间关系模型;构建了融合视觉空间关系模型的数据集,训练视觉空间关系预测模型,比较不同模型的视觉空间关系检测能力,验证了基于视觉空间关系模型所构建数据集的完备性及模型提升视觉关系检测能力的有效性。本文能够改善当前机器视觉领域空间关系不统一的问题,对提高无人平台视觉关系检测、实现空间关系记录和地图模型构建等方面具有一定的研究意义。

关键词: 视觉空间关系, 无人平台, 视觉关系检测, 时空Transformer

Abstract: Visual spatial relationship refer to the spatial relations obtained through visual sensors. When the cognitive subject changes from a human to an unmanned platform, describing and recording spatial relationships explicitly is the key for unmanned platform to realize scene understanding and spatial reasoning. Focusing on the current situation of the lack of visual spatial relationship model for unmanned platform, we integrate the classification, model and algorithm about spatial relationship in cartography and machine vision, propose a visual spatial relationship model for unmanned platform. We construct datasets incorporating the visual spatial relationship model, train the visual spatial relationship prediction model, and compare the visual spatial relationship detection capabilities of different models, which verified the completeness of the dataset constructed based on the visual spatial relationship model as well as the validity of the model in enhancing the visual spatial relationship detection capabilities. This study can improve the current problem of spatial relationship inconsistency in the field of machine vision, and has certain research significance in improving the visual relationship detection of unmanned platform, realizing the spatial relationship record and map model construction.

Key words: visual spatial relationship, unmanned platform, visual relationship detection, ST-Transformer

中图分类号: