测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 144-149.doi: 10.13474/j.cnki.11-2246.2025.0325

• 技术交流 • 上一篇    

无人机摄影测量在砂质海岸生态系统调查中的应用

余威1,2,3, 刘敏聪4, 王孟1,2,3, 刘悦4, 李济坤1,2,3, 阳杰1,2,3, 李团结1,2,3   

  1. 1. 自然资源部南海生态中心, 广东 广州 510300;
    2. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510300;
    3. 海南南沙珊瑚礁生态系统国家野外科学观测研究站, 广东 广州 510300;
    4. 深圳海洋发展研究促进中心, 广东 深圳 518052
  • 收稿日期:2024-05-31 发布日期:2025-04-03
  • 作者简介:余威(1987—),男,硕士,高级工程师,主要研究方向为沉积动力地貌学。E-mail:sharawei@foxmail.com
  • 基金资助:
    科技基础资源调查专项(2022FY202403);国家海洋局南海分局海洋科学技术局长基金(180208);广东省平台基地及科技基础条件建设项目(2021B1212050025)

Application of UAV photogrammetry in the survey of sandy coast ecosystem

YU Wei1,2,3, LIU Mincong4, WANG Meng1,2,3, LIU Yue4, LI Jikun1,2,3, YANG Jie1,2,3, LI Tuanjie1,2,3   

  1. 1. South China Sea Ecological Center, Ministry of Natural Resources, Guangzhou 510300, China;
    2. Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510300, China;
    3. Nansha Islands Coral Reef Ecosystem National observation and Research Station, Guangzhou 510300, China;
    4. Marine Development Research and Promotion Center of Shenzhen, Shenzhen 518052, China
  • Received:2024-05-31 Published:2025-04-03

摘要: 砂质海岸是非常优质的旅游资源,具有很高的旅游悠闲价值和美学价值。应用无人机摄影测量技术生成砂质海岸正射影像的平面精度达厘米级,数字高程模型的高程精度达到亚米级别。本文基于无人机正射影像,分别应用绿叶指数(GLI)、绿红植被指数(GRVI)和红绿蓝植被指数(RGBVI)识别沙滩后滨植被面积,并与GIS数字化结果进行对比,误差分别为24.4%、7.4%和25.2%,绿红植被指数(GRVI)识别的结果与GIS数字化的结果最接近。大梅沙沙滩后滨植被种类有66种,多为园林绿化植被,原生植被较少。沙滩面积为16.3 hm2,其中干滩面积为8.1 hm2,潮间带面积为8.2 hm2。无人机未接入RTK信号,根据生成的DEM提取高程数据与地面RTK实测高程平均差值为0.598 m,无人机实测的高程低于RTK实测结果。采用五镜头相机获取真实地物信息,构建了沙滩实景三维模型,生成了沙滩雕塑和沙滩后方局部建筑物实景三维模型。

关键词: 无人机, 摄影测量, 砂质海岸生态系统, 三维模型

Abstract: The sandy coast is a very high-quality tourism resource with high tourism leisure value and aesthetic value. The plane accuracy of using drones to generate orthophoto images of sandy coasts reaches the centimeter level, and the elevation accuracy of digital elevation models reaches the sub meter level. Based on drone orthophoto images, the green leaf index(GLI), green red vegetation index(GRVI), and red green blue vegetation index(RGBVI) are applied to identify the vegetation area of backshore. Compared with the results of GIS digitization, the errors are 24.4%, 7.4%, and 25.2%, respectively. The results of green red vegetation index(GRVI) identification are closest to those of GIS digitization. There are 66 types of vegetation on the backshore of Dameisha beach, most of which are garden and green vegetation, with fewer native vegetation. The beach area is 16.3 hectares, of which the dry beach area is 8.1 hectares and the intertidal zone area is 8.2 hectares. The drone is not connected to the RTK signal, and the average difference between the elevation data extracted from the generated DEM and the ground RTK measured elevation is 0.598 m. The measured elevation of the drone is lower than the RTK measured results. We use a five lens aerial camera to obtain real land information and construct 3D model of the beach, and generate specific 3D model of the beach sculpture and local buildings behind the backshore.

Key words: unmanned aerial vehicle (UAV), photogrammetry, sandy coast ecosystem, 3D model

中图分类号: