测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 58-65.doi: 10.13474/j.cnki.11-2246.2025.0710

• 学术研究 • 上一篇    下一篇

基于XGBoost-SHAP模型的滇中典型区采矿损毁地植被变化及影响因子分析

何思璇1, 杨杰皓2, 张国有3, 朱大明1, 王冲1,2, 胡官兵4   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650031;
    2. 中国电建集团昆明勘测设计研究院 有限公司, 云南 昆明 650051;
    3. 云南大学地球科学学院, 云南 昆明 650091;
    4. 云南省地质技术 信息中心, 云南 昆明 650051
  • 收稿日期:2025-02-19 发布日期:2025-08-02
  • 通讯作者: 朱大明。E-mail:634617255@qq.com
  • 作者简介:何思璇(1992—),女,硕士生,主要研究方向为自然资源遥感。E-mail:529905642@qq.com
  • 基金资助:
    国家自然科学基金(42161067);云南省重大科技专项计划(202202AD080010)

Analysis of vegetation changes and influencing factors on mine-damaged land in a typical county in central Yunnan based on XGBoost-SHAP model

HE Sixuan1, YANG Jiehao2, ZHANG Guoyou3, ZHU Daming1, WANG Chong1,2, HU Guanbing4   

  1. 1. Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650031, China;
    2. PowerChina Kunming Engineering Corporation Limited, Kunming 650051, China;
    3. School of earth sciences, Yunnan University, Kunming 650091, China;
    4. Yunnan Geological Technical Information Center, Kunming 650051, China
  • Received:2025-02-19 Published:2025-08-02

摘要: 云南省滇中地区采矿损毁地分布众多,开展其植被恢复研究有助于区域生态环境的保护与治理。本文以安宁市、弥勒市及曲靖市马龙区等采矿损毁集中区域为研究对象,基于GEE平台处理2000—2022年Landsat遥感影像数据,运用年均kNDVI指数表征植被覆盖特征; 并结合2023年县域采矿损毁地空间分布数据,综合运用XGBoost-SHAP可解释机器学习模型、Theil-Sen和Mann-Kendall趋势检验、变异系数和Hurst指数等方法,系统分析采矿损毁地植被变化及其影响因子。研究发现,研究区内采矿损毁地植被变化呈现严重退化趋势、稳定性较差,且具有正向持续性特征;地形因子(高程、坡度)是植被演变的主导因素,土壤化学性质因素(氮、磷、钾)次之,土壤物理性质因素(孔隙率、黏土含量)影响较小。本文提出的基于XGBoost-SHAP模型的驱动因子分析方法,能够有效识别区域植被变化的关键影响因素,为类似区域的生态修复研究提供参考。

关键词: 采矿损毁土地, 云南省滇中区域, 植被覆盖率, XGBoost-SHAP

Abstract: In central Yunnan province,there are numerous areas of mining damage,and the study of their vegetation restoration is beneficial for the protection and management of the regional ecological environment.In this study,it focus on Anning city,Mile city and Malong district of Qujing city.The research utilizes Landsat remote sensing image data from 2000 to 2022,processed via the GEE platform.The annual average kNDVI index is employed to characterise the vegetation cover.Then combines with the spatial distribution of mining-affected land in the county area in 2023.The XGBoost-SHAP interpretable machine learning model,Theil-Sen and Mann-Kendall trend test,coefficient of variation and Hurst index are employed to systematically analyse the changes in vegetation cover and its influencing factors in the mining-damaged land in the study area.The study reveals that the vegetation of mining-affected land in the study area exhibites a marked degradation trend,characterised by diminished stability and the presence of positive persistence characteristics.The analysis indicates that topographic factors (such as elevation and slope) are emerged as the predominant influences on vegetation evolution,followed by soil chemical property factors (including nitrogen,phosphorus,and potassium) and soil physical property factors (such as porosity and clay content) to a least extent.The driving factor analysis method based on the XGBoost-SHAP model proposed in this study can effectively identify the key influencing factors of regional vegetation change,and provide a reference for ecological restoration research in similar regions.

Key words: mining-induced land degradation, mid-inner area of Yunnan province, vegetation coverage, XGBoost-SHAP

中图分类号: