测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 126-131,146.doi: 10.13474/j.cnki.11-2246.2025.0720

• 技术交流 • 上一篇    下一篇

融合SBAS-InSAR形变与机器学习模型的滑坡易发性评价

李文东1, 叶禹2, 李霞3, 魏伟2, 辛存林2   

  1. 1. 甘肃省地质矿产勘查开发局第三地质矿产勘查院, 甘肃 兰州 730050;
    2. 西北师范大学地理与环境 科学学院, 甘肃 兰州 730070;
    3. 甘肃省基础地理信息中心, 甘肃 兰州 730000
  • 收稿日期:2025-02-28 发布日期:2025-08-02
  • 通讯作者: 叶禹。E-mail:1667328044@qq.com
  • 作者简介:李文东(1982—),男,硕士,高级工程师,主要研究方向为地质灾害防治。E-mail:liwendong_2000@126.com
  • 基金资助:
    甘肃省地矿局创新资金(2023CX09);甘肃省生态文明建设重点研发专项(24YFFA063)

Evaluation of landslide susceptibility by fusing SBAS-InSAR deformation and machine learning model

LI Wendong1, YE Yu2, LI Xia3, WEI Wei2, XIN Cunlin2   

  1. 1. No. 3 Institute of Geology and Mineral Exploration, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China;
    2. College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China;
    3. Gansu Geomatic Information Center, Lanzhou 730000, China
  • Received:2025-02-28 Published:2025-08-02

摘要: 本文综合运用InSAR和机器学习技术,对甘肃省夏河县北部滑坡重点区进行易发性评价,将SBAS-InSAR获取的形变信息作为动态评价因子参与到11个静态因子中,使用随机森林(RF)、逻辑回归(LR)、极端梯度提示(XGBoost)3种模型进行易发性评价,并对其评价性能进行对比分析。结果发现,3种评价模型中,XGBoost模型性能最佳,且加入形变量后的XGBoos模型评价精度高于仅使用静态因子的XGBoost模型,其综合性能指标AUC值达0.93,召回率、准确率、F1分数分别达0.896、0.894、0.898。因此,将SBAS-InSAR技术获取的地表形变量作为滑坡易发性评价因子,可以提高模型预测的准确性,并能增加评价的实效性。

关键词: 滑坡易发性评价, 机器学习, SBAS-InSAR, 评价因子, 夏河县

Abstract: This paper comprehensively employs InSAR and machine learning techniques to conduct landslide susceptibility assessment in the key landslide-prone area in the northern part of Xiahe county,Gansu province.The deformation information obtained by SBAS-InSAR is incorporated as a dynamic evaluation factor into the 11 static factors.Three models,namely RF(random forest),LR (logistic regression),and XGBoost (extreme gradient boosting),are used for susceptibility assessment,and their evaluation performances are compared and analyzed.The results show that among the three assessment models,the XGBoost model has the best performance.The results indicate that the XGBoost model with the addition of surface deformation variables has a higher evaluation accuracy than the XGBoost model using only static factors.Its comprehensive performance indicators,such as AUC value,Recall,Precision,and F1,reach 0.93,0.896,0.894,and 0.898 respectively.Therefore,incorporating surface deformation variables obtained by SBAS-InSAR technology as landslide susceptibility evaluation factors can improve the accuracy of model prediction and enhance the effectiveness of the assessment.

Key words: landslide susceptibility evaluation, machine learning, SBAS-InSAR, evaluation factor, Xiahe county

中图分类号: