[1] 应急管理部发布2022年全国自然灾害基本情况[J].防灾博览,2023(1):26-27. [2] 戴岚欣,许强,范宣梅,等.2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J].工程地质学报,2017,25(4):1151-1164. [3] AKGUN A,SEZER E A,NEFESLIOGLU H A,et al.An easy-to-use Matlab program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm[J].Computers & Geosciences,2012,38(1):23-34. [4] 许冲,戴福初,姚鑫,等.GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J].岩石力学与工程学报,2009,28(S2):3978-3985. [5] 许强,朱星,李为乐,等.“天-空-地” 协同滑坡监测技术进展[J].测绘学报,2022,51(7):1416-1436. [6] 吴润泽,胡旭东,梅红波,等.基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J].地球科学,2021,46(1):321-330. [7] 周天游,刘畅,薛鹏,等.基于不同机器学习的震后滑坡易发性建模研究[J].自然灾害学报,2023,32(5):177-185. [8] 李勇,宋英旭.基于GBDT模型的广东阳春市地质灾害易发性评价研究[J].矿产勘查,2023,14(12):2434-2446. [9] 周定义,左小清,喜文飞,等.联合SBAS-InSAR和PSO-BP算法的高山峡谷区地质灾害危险性评价[J].农业工程学报,2021,37(23):108-116. [10] 张佳磊.基于相干目标的D-InSAR方法研究及在北京地面沉降监测中的应用[D].北京:中国地质大学(北京),2013. [11] 廖明生,王腾.时间序列InSAR技术与应用[M].北京:科学出版社,2014. [12] HONG Haoyuan,POURGHASEMI H R,POURTAGHI Z S.Landslide susceptibility assessment in Lianhua county (China):a comparison between a random forest data mining technique and bivariate and multivariate statistical models[J].Geomorphology,2016,259:105-118. [13] AYALEW L,YAMAGISHI H.The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan[J].Geomorphology,2005,65(1/2):15-31. [14] 尚敏,廖芬,马锐,等.白家包滑坡变形与库水位、降雨相关性定量化分析研究[J].工程地质学报,2021,29(3):742-750. [15] 贾应,吴彩燕,王立娟,等.融合InSAR与机器学习的滑坡易发性评价[J].大地测量与地球动力学,2025,45(3):231-238. [16] WANG Lin,WU Chongzhi,TANG Libin,et al.Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method[J].Acta Geotechnica,2020,15(11):3135-3150. [17] CHEN Tianqi,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:ACM Press,2016:785-794. [18] BASHARAT M U,KHAN J A,ABDO H G,et al.An integrated approach based landslide susceptibility mapping:case of Muzaffarabad region,Pakistan[J].Geomatics,Natural Hazards and Risk,2023,14(1):2210255. |