测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 132-137,163.doi: 10.13474/j.cnki.11-2246.2025.0721

• 技术交流 • 上一篇    下一篇

基于改进YOLOv11的光伏场区施工进度检测

魏文豪, 衷诚, 郭健辰, 张正林, 连静   

  1. 中国电建集团成都勘测设计研究院有限公司, 四川 成都 611130
  • 收稿日期:2024-12-30 发布日期:2025-08-02
  • 作者简介:魏文豪(1998—),男,硕士,主要从事工程项目数字化工作。E-mail:2023180@chidi.com.cn
  • 基金资助:
    中国电建集团成都院自主项目(PI2404)

Improved YOLOv11-based construction progress detection technology for photovoltaic sites

WEI Wenhao, ZHONG Cheng, GUO Jianchen, ZHANG Zhenglin, LIAN Jing   

  1. PowerChina Chengdu Engineering Limited Corporation, Chengdu 611130, China
  • Received:2024-12-30 Published:2025-08-02

摘要: 光伏行业作为可再生能源的重要分支,在“双碳”背景下迎来了爆发式增长。在光伏项目施工期,传统的进度管理手段已不能满足现场管理人员的需要,急需一种精确、高效的施工进度自动化管理方法。当前的目标检测算法在复杂环境下特征提取困难、检测精度低而无法适用于光伏场区的组串识别。基于此,本文提出一种光伏场区施工进度检测技术。首先,使用无人机对光伏场区进行遥感影像拍摄,并对影像数据进行自动拼接和裁剪处理;然后,使用改进YOLOv11模型对图像进行识别,识别对象包括光伏板、支架,并将识别的对象坐标信息与CAD平面布置图进行比对;最后,生成准确的场区施工进度信息用于现场管理。依托实际工程所采集的数据进行分析与验证,结果表明,该技术对于光伏板和支架的进度识别误差分别为5.2%和9.5%,与真实结果误差较小,考虑模型迭代后泛化能力的提升,可满足实际使用需求。本文使用改进的YOLOv11模型,通过引入BiFPN和SEAM模块,增强了复杂环境下的检测性能,实现了91.8%的mAP@0.5、93.4%的准确率和89.8%的召回率,相较于YOLOv11和YOLOv10模型,分别提高了1.6%、2.2%、1.2%和4.2%、3.6%、3.1%。

关键词: 进度管理, YOLOv11, BiFPN, SEAM, 光伏

Abstract: As an important branch of renewable energy,the photovoltaic industry has ushered in explosive growth under the background of “double carbon”.The traditional means of progress management during the construction period of photovoltaic projects are no longer sufficient to meet the needs of on-site managers,and there is an urgent need for an accurate and efficient construction progress automation management method.Current target detection algorithms are limited by the difficulty of feature extraction in complex environments and low detection accuracy,and can not be applied to string identification in photovoltaic fields.Based on this,this paper proposes a PV field construction progress detection technology: firstly,use a drone to take remote sensing images of the PV field,and automatically stitch and crop the image data; secondly,use the improved YOLOv11 model to identify the images,identify the objects including PV panels and racks,and compare the coordinates of the identified objects with the CAD layout plan; finally,generate the accurate construction progress information for site management.Relying on the data collected from the actual project for analysis and verification,the results show that,the progress recognition error of this technology for PV panels and brackets is5.2% and 9.5% respectively,which is smaller than the real results,and considering the improvement of the generalisation ability of the model after iteration,it can meet the requirements for practical use.The improved YOLOv11 model used in this technology enhances the detection performance in complex environments by introducing BiFPN and SEAM modules,and achieves 91.8%mAP@0.5,93.4%accuracy and 89.8%recall,which are 1.6%,2.2%,1.2%and 4.2%,3.6%,3.1%respectively compared with YOLOv11 and YOLOv10 models.

Key words: progress management, YOLOv11, BiFPN, SEAM, photovoltaic

中图分类号: