测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 131-134.doi: 10.13474/j.cnki.11-2246.2025.0921

• 学术研究 • 上一篇    下一篇

基于深度学习的耕地信息提取与地表变化监测分析

江峰, 陈超   

  1. 江苏省基础地理信息中心, 江苏 南京 210013
  • 收稿日期:2025-02-17 发布日期:2025-09-29
  • 通讯作者: 陈超。E-mail:chenchao077@126.com
  • 作者简介:江峰(1979—),男,高级工程师,研究方向为基础测绘、地图制图、天地图。E-mail:672345764@qq.com
  • 基金资助:
    江苏省自然资源科技项目(2022005)

Farmland information extraction and surface change monitoring analysis based on deep learning

JIANG Feng, CHEN Chao   

  1. Provincial Geomatics Center of Jiangsu, Nanjing 210013, China
  • Received:2025-02-17 Published:2025-09-29

摘要: 耕地是国家安全的重要保障,其空间分布是耕地保护、国土空间规划等管理工作的主要依据,地表变化监测则是掌握土地利用与自然资源的关键支撑。随着信息技术的发展,基于深度学习的地物分类和地表变化监测得到广泛研究。本文对基于深度学习的遥感智能信息提取技术开展探索,以覆盖试验区域的两期吉林一号卫星遥感影像为数据源,利用深度学习框架下的遥感大模型,分别对单期遥感影像开展耕地图斑提取,对两期影像开展地表变化监测,并结合遥感影像与国土调查数据对提取结果进行精度评定。结果表明,研究方法能准确识别耕地图斑与变化区域,边界形状与影像吻合,具有良好的应用潜力。

关键词: 深度学习, 调查监测, 耕地分布, 变化监测, 自然资源

Abstract: Farmland is an important guarantee for national security,and its spatial distribution is the main basis for farmland protection,national spatial planning,and other management work,while surface change monitoring is a key support for mastering land use and natural resources.With the development of information technology,deep learning based land cover classification and surface change monitoring have been widely studied.This article explores the intelligent information extraction technology of remote sensing based on deep learning.Using two phases of Jilin-1 satellite remote sensing images covering the experimental area as the data source,a large-scale remote sensing model under the deep learning framework is used to extract agricultural patches from a single phase of remote sensing images and monitor surface changes from two phases of images.The accuracy of the extraction results is evaluated by combining remote sensing images with land survey data.The results indicate that the research method can accurately identify farming patches and changing areas,and the boundary shape matches the image,with good potential for application.

Key words: deep learning, investigation and monitoring, distribution of cultivated land, change detection, natural resources

中图分类号: