测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 112-117.doi: 10.13474/j.cnki.11-2246.2025.0918

• 学术研究 • 上一篇    下一篇

改进分割大模型的桥梁缆索损伤语义分割方法

邓小龙1, 黄志海1, 郭波2   

  1. 1. 广东工业大学土木与交通工程学院, 广东 广州 510006;
    2. 深圳大学建筑与城市规划学院, 广东 深圳 518060
  • 收稿日期:2025-02-24 发布日期:2025-09-29
  • 通讯作者: 郭波。E-mail:guobo@szu.edu.cn
  • 作者简介:邓小龙(2001—),男,硕士生,主要研究方向为基于视觉大模型的图像语义分割。E-mail:2112309040@mail2.gdut.edu.cn
  • 基金资助:
    国家自然科学基金(U21A20139)

An improved semantic segmentation method for bridge cable damage using large-scale segmentation models

DENG Xiaolong1, HUANG Zhihai1, GUO Bo2   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
  • Received:2025-02-24 Published:2025-09-29

摘要: 桥梁缆索损伤检测是桥梁安全运营及维护的重要工作,快速、自动化地处理缆索图像进而准确检测出损伤部位是桥梁安全运营的保障。本文对分割大模型SAM进行改进并将其应用于桥梁缆索损伤语义分割,为损伤检测提供重要依据。改进SAM的方法有两点:①对图像编码器进行Adapter微调,并通过迁移学习方法,提高模型应用于桥梁缆索数据的泛化性;②对掩码解码器进行预测头微调,使SAM无需提示,并引入多类别以实现语义分割。为了验证改进SAM的优势,与DeepLabV3+在近2200张桥梁缆索的数据集上进行了对比试验。结果表明,改进SAM面对损伤类别分布不均匀、样本数少的情况更具优势,其语义分割评价指标mIoU达到73.41%,平均F1得分为83.99%,均类精度为81.80%。

关键词: 深度学习, 语义分割, 大模型微调, 桥梁缆索损伤检测

Abstract: Bridge cable damage detection is a critical aspect of bridge safety operation and maintenance. How to quickly and automatically process cable images and accurately detect damaged areas is key to ensuring bridge safety operations.This paper improved the large-scale segmentation model SAM (segment anything model)and applied it to the semantic segmentation of bridge cable damage,providing significant evidence for damage detection.The improvements to SAM consisted of two main points:①Fine-tuning an Adapter on the image encoder and enhancing the model's generalization to bridge cable data through transfer learning methods.②Fine-tuning the prediction head of the mask decoder to enable SAM to perform semantic segmentation without prompts and introduce multi-class capabilities.To verify the advantages of the improved SAM,comparative experiments had been conducted using a dataset of nearly 2200 bridge cable images against DeepLabV3+.The results showed that the improved SAM performed better in scenarios with imbalanced damage category distributions and limited sample sizes.Its semantic segmentation evaluation metrics included a mean intersection over union (mIoU)of 73.41%,an average F1 score of 83.99%,and mean class accuracy of 81.80%.

Key words: deep learning, semantic segmentation, large model fine-tuning, damage detection of bridge cable

中图分类号: