测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 78-83,104.doi: 10.13474/j.cnki.11-2246.2025.0913

• 学术研究 • 上一篇    下一篇

轻量的增强型激光雷达-惯性-视觉里程计系统

杨颜光1, 钱建国1, 于斌2, 郭洁2, 焦扬2   

  1. 1. 辽宁工程技术大学, 辽宁 阜新 123000;
    2. 扎赉诺尔煤业有限责任公司, 内蒙古 呼伦贝尔 021400
  • 收稿日期:2025-01-02 发布日期:2025-09-29
  • 作者简介:杨颜光(2000—),男,硕士,主要研究方向为SLAM。E-mail:731318506@qq.com

A lightweight enhanced LiDAR-inertial-visual odometry system

YANG Yanguang1, QIAN Jianguo1, YU Bin2, GUO Jie2, JIAO Yang2   

  1. 1. Liaoning Technical University, Fuxin 123000, China;
    2. Zhalainuoer Coal Industry Co., Ltd., Hulun Buir 021400, China
  • Received:2025-01-02 Published:2025-09-29

摘要: 激光-惯性-视觉里程计(LIVO)在移动机器人和自动驾驶等领域展现出广泛的应用潜力。本文基于FAST-LIVO提出了一种轻量的增强型激光雷达-惯性-视觉里程计系统——LITE-LIVO。该系统通过集成激光雷达、惯性测量单元(IMU)和视觉传感器,实现高效且实时的姿态估计与高精度地图构建;为提高系统在动态光照条件下的稳健性,引入一种基于深度学习的特征点提取方法和稀疏光流跟踪方法,并通过构建视觉观测残差,在卡尔曼滤波中融合视觉与激光雷达信息;此外,设计了紧耦合的视觉-惯性里程计(VIO)子系统,从激光雷达点云中筛选高质量视觉特征,同时更有效地管理视觉地图。试验结果表明,LITE-LIVO在多个公开数据集和实际场景中均表现出色,尤其在处理复杂环境和退化场景时展现了显著的优势。本文为激光-惯性-视觉里程计的发展提供了新的思路和方法,提高了多源数据融合的定位精度,增加了移动机器人的应用场景。

关键词: 激光-惯性-视觉里程计, 深度学习, 光流跟踪, 卡尔曼滤波

Abstract: Lightweight intelligent tracking for enhanced LiDAR-IMU-visual odometry(LIVO)has broad applications in mobile robotics and autonomous driving.This paper proposes LITE-LIVO,a lightweight and enhanced LIVO system built upon FAST-LIVO,integrating LiDAR,IMU and vision sensors for real-time pose estimation and high-precision mapping.To enhance robustness under dynamic lighting,the system employs a deep learning-based feature extraction and sparse optical flow tracking,fusing visual and LiDAR data via Kalman filtering with visual residuals.A tightly coupled visual-IMU odometry (VIO)subsystem filters high-quality visual features from LiDAR point clouds and optimizes visual map management.Experimental results on public datasets and real-world scenarios demonstrate superior performance,especially in complex and degraded environments.This study advances multi-source data fusion techniques,improving localization accuracy and expanding application domains for mobile robots.

Key words: LiDAR-inertial-visual odometry, deep learning, optical flow tracking, Kalman filter

中图分类号: