测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 71-75,137.doi: 10.13474/j.cnki.11-2246.2025.1012

• 学术研究 • 上一篇    

单目视觉驱动的机器人实时高精度稠密场景重建算法

蒋祥龙1, 邓文亮1, 何胜喜2,3   

  1. 1. 重庆科创职业学院智能制造与机器人学院, 重庆 402160;
    2. 重庆大学机械传动国家重点实验室, 重庆 400044;
    3. 重庆长安汽车股份有限公司, 重庆 400023
  • 收稿日期:2025-03-13 发布日期:2025-10-31
  • 作者简介:蒋祥龙(1983-),男,硕士,副教授,主要研究方向为电气工程及自动化。E-mail:jiangxianglong1983@163.com
  • 基金资助:
    重庆市教委科学技术研究计划(KJQN202505404)

Monocular vision-driven real-time high-precision dense scene reconstruction algorithm for robots

JIANG Xianglong1, DENG Wenliang1, HE Shengxi2,3   

  1. 1. College of Intelligent Manufacturing and Robotics, Chongqing College of Science and Creation, Chongqing 402160, China;
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;
    3. Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
  • Received:2025-03-13 Published:2025-10-31

摘要: 本文提出一种单目视觉驱动的机器人实时高精度稠密场景重建算法,该算法基于深度稠密单目视觉SLAM和快速不确定性传播技术,从图像中重建三维场景。该算法能够实现场景的稠密、准确和实时三维重建,并对来自单目视觉SLAM的极端噪声深度估计具有良好的稳健性。与传统通过特殊深度滤波器或从RGB-D传感器模型中估计深度不确定性的方法不同,本文方法直接利用SLAM中底层束平差问题的信息矩阵生成概率深度不确定性。这种深度不确定性为体积融合的深度图加权提供了关键信号。本文方法能够生成更加精确且伪影显著减少的三维网格,并在具有挑战性的Euroc数据集上进行了试验验证。结果表明,相比直接从单目视觉SLAM中融合深度的方式,本文方法在建图准确率上提升了85%。

关键词: 单目视觉, 稠密重建, SLAM, 深度不确定性, 机器人

Abstract: This paper proposes a monocular vision-driven real-time high-precision dense scene reconstruction algorithm for robots, based on deep dense monocular visual SLAM and rapid uncertainty propagation techniques to reconstruct 3D scenes from images.The algorithm achieves dense, accurate, and real-time 3D scene reconstruction while demonstrating robustness against extreme noise in depth estimation from monocular visual SLAM.Unlike traditional methods that rely on specialized depth filters or estimate depth uncertainty from RGB-D sensor models, this approach directly utilizes the information matrix from the underlying bundle adjustment problem in SLAM to generate probabilistic depth uncertainty.This depth uncertainty provides a critical signal for weighting depth maps during volumetric fusion.Our method produces more precise 3D meshes with significantly reduced artifacts.Experimental validation on the challenging Euroc dataset shows that compared to methods that directly fuse depths from monocular visual SLAM improves mapping accuracy by 85%.

Key words: monocular vision, dense reconstruction, SLAM, depth uncertainty, robotics

中图分类号: