测绘通报 ›› 2018, Vol. 0 ›› Issue (12): 6-9,14.doi: 10.13474/j.cnki.11-2246.2018.0375

• 学术研究 • 上一篇    下一篇

自适应平方根无迹粒子滤波算法及其应用

李晓明, 赵长胜, 张立凯   

  1. 江苏师范大学地理测绘与城乡规划学院, 江苏 徐州 221116
  • 收稿日期:2018-04-18 修回日期:2018-05-24 出版日期:2018-12-25 发布日期:2019-01-03
  • 通讯作者: 赵长胜。E-mail:zhaocs1957@126.com E-mail:zhaocs1957@126.com
  • 作者简介:李晓明(1993-),男,硕士,研究方向为GNSS数据处理。E-mail:13023523575@163.com
  • 基金资助:
    江苏省研究生科研创新项目(KYCX17_1571)

Adaptive Square Root Unscented Particle Filter Algorithm and Its Application

LI Xiaoming, ZHAO Changsheng, ZHANG Likai   

  1. School of Geodesy and Geomatics, Jiangsu Normal University, Xuzhou 221116, China
  • Received:2018-04-18 Revised:2018-05-24 Online:2018-12-25 Published:2019-01-03

摘要: 目标跟踪所面对的动态定位观测方程具有非线性,随机模型具有未知性,目标在运动过程中受到的随机扰动较大,先验方差很难确定,这可能导致在更新迭代过程中参数估计产生错误,从而导致滤波发散。针对上述问题,本文提出了改进的自适应平方根无迹粒子滤波算法(ASRUPF),该算法融合了自适应滤波理论、平方根无迹卡尔曼滤波算法(SRUKF)和粒子滤波(PF)多种算法,确定系统量测和状态噪声的概率密度函数,确保其方差阵的非负定性。算法有效地提高了单点动态定位精度。

关键词: 平方根无迹粒子滤波, 自适应, 非线性卡尔曼, 动态定位

Abstract: Target tracking in dynamic positioning observation equations is nonlinear and stochastic model with uncertainty, and goals in the process of movement by the random disturbance is larger. It is difficult to determine a priori variance, which may lead to the update parameter estimation errors in iterative process, which can lead to filter divergence. According to the above problem, this paper presents an improved adaptive square root unscented particle filter algorithm(ASRUPF). This algorithm combines the adaptive filtering theory, square root unscented kalman filter (SRUKF) and particle filter (PF), which determine the system measurement and the probability density function of state noise, to ensure variance matrix is non-negative qualitative. The algorithm effectively improves the single point dynamic positioning accuracy.

Key words: SRUPF, adaptive, nonlinear kalman, dynamic positioning

中图分类号: