测绘通报 ›› 2018, Vol. 0 ›› Issue (6): 46-49.doi: 10.13474/j.cnki.11-2246.2018.0174

• 学术研究 • 上一篇    下一篇

一种基于高度差异的点云数据分类方法

马东岭1,2, 王晓坤2, 李广云1   

  1. 1. 信息工程大学导航与空天目标工程学院, 河南 郑州 450001;
    2. 山东建筑大学测绘地理信息学院, 山东 济南 250101
  • 收稿日期:2017-11-06 修回日期:2018-02-08 出版日期:2018-06-25 发布日期:2018-07-07
  • 作者简介:马东岭(1980-),女,博士生,副教授,主要从事数字摄影测量、激光雷达与三维重建方面的研究工作。E-mail:mdling2003@126.com
  • 基金资助:
    山东省住房和城乡建设厅科技计划(2014KY004);山东省艺术科学重点课题(2014082);教育部人文社会科学研究规划基金(1ZYJAZH013)

Research on the Classification Method of Point Cloud Based on Elevation Difference

MA Dongling1,2, WANG Xiaokun2, LI Guangyun1   

  1. 1. School of Navigation and Aerospace Engineering, Information Engineering University, Zhengzhou 450001, China;
    2. School of Surveying and Geoinformatics, Shandong Jianzhu University, Jinan 250101, China
  • Received:2017-11-06 Revised:2018-02-08 Online:2018-06-25 Published:2018-07-07

摘要: LiDAR点云数据存在数据量大、不易识别、不易处理的问题,为了解决上述问题,需要对点云数据进行分类处理。针对点云分类方法存在精度不高、处理过程复杂等难题,本文提出了一种基于高度差值的二次导数的建筑物、植被的点云分类方法,能够高效、准确地将各类点云分离。利用该方法分离点云数据,首先通过TerraSolid软件对原始LiDAR点云数据进行初步处理,去除噪点并提取出地表点云,然后利用规则建筑和不规则植被高度差异上的二次导数不同,提取出可能是建筑物或植被的点,并利用高斯偏差估计模型为建筑物、植被点的分类提供阈值,最后利用断点统计模型将建筑物、植被点云补充完整。为证明这种方法的可行性和有效性,使用Autzen_Stadium地区的LiDAR点云数据进行点云分类试验,结果表明,该方法具有可行性好、分类效果好、处理自动化等优势。

关键词: LiDAR点云数据, 点云数据分类, 高度差异, 建筑物, 植被

Abstract: LiDAR point cloud data has the problem of large data volume, not easy to be recognized and difficult to deal with. In order to solve the above problems,point cloud data needs classification and processing. Aiming at the problem that the accuracy of point cloud classification is not high and the complexity of the process is complicated,a new method of point cloud classification based on height difference is proposed,which is combined with TerraSolid software.Using the method to separate the point cloud data,the first step is to deal with the original LiDAR point cloud data by TerraSolid software to remove the noise and extract the surface point cloud,and then use the second derivative of regular building and irregular vegetation height difference to extract which may be the point of the building or vegetation,and use the Gaussian deviation estimation model to provide the threshold for the classification of the building and vegetation,and finally use the breakpoint statistical model to supplement the building and vegetation point cloud.In order to prove the feasibility and effectiveness of this method,the point cloud classification of LiDAR point cloud data in Autzen_Stadium region is used.The results show that the method has the advantages of good feasibility,good sorting effect and processing automation.

Key words: LiDAR point cloud data, point cloud data classification, elevation difference, building, vegetation

中图分类号: