测绘通报 ›› 2018, Vol. 0 ›› Issue (9): 50-54,73.doi: 10.13474/j.cnki.11-2246.2018.0278

• 学术研究 • 上一篇    下一篇

迁移学习支持下的土地利用/土地覆被分类

李海雷1, 胡小娟2, 郭杭2, 吴文瑾3   

  1. 1. 南昌大学信息工程学院, 江西 南昌 330031;
    2. 南昌大学科学技术学院, 江西 南昌 330031;
    3. 中国科学院遥感与数字地球研究所, 北京 100089
  • 收稿日期:2018-04-02 出版日期:2018-09-25 发布日期:2018-09-29
  • 作者简介:李海雷(1991-),女,硕士,研究方向为基于深度学习的SAR图像分类分割、目标的导航与定位及图像匹配等。E-mail:15797898526@163.com
  • 基金资助:

    国家自然科学基金(41764002;41374039);国家重点研发计划(2016YFB0502002);江西省研究生创新专项基金(YC2017-S106)

Land Use/Land Cover Classification Based on Transfer Learning

LI Hailei1, HU Xiaojuan2, GUO Hang2, WU Wenjin3   

  1. 1. School of Information Engineering, Nanchang University, Nanchang 330031, China;
    2. College of Science and Technology, Nanchang University, Nanchang 330031, China;
    3. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2018-04-02 Online:2018-09-25 Published:2018-09-29

摘要:

针对土地利用/土地覆被分类中小规模数据集无法使用深度学习方法自动分类的问题,提出了利用精简深度残差神经网络(Resnet-50)进行迁移学习的土地利用/土地覆被自动分类算法。首先,使用Sentinel-1卫星提供的遥感数据制作数据集;然后,对Resnet-50中每层的卷积模板数量进行压缩并在其后级联自适应网络得到精简残差网络;最后,利用ImageNet数据集预训练精简残差网络,并将网络模型迁移到Sentinel-1数据集对网络参数进行微调,最终实现小数据集上土地利用/土地覆被的高精度自动分类。试验结果表明该算法在SAR数据集上的分类精度高达95.15%,验证了算法的可行性。

关键词: 土地利用/土地覆被分类, Sentinel-1卫星, 深度残差神经网络, 迁移学习, 深度学习

Abstract:

Land use/land cover classification of small sized datasets cannot be accurately and automatically classified by deep learning method.In order to solve this problem,a land ues/land cover automatic classification algorithm applying the reduced-modified deep residual neural network(Resnet-50) for the transfer learning is proposed.Firstly,use the original remote sensing data provided by Sentinel-1 satellite to create dataset.Secondly,compress convolution template numbers of per convolution layer in Resnet-50 and cascade the adaptive networks behind to the obtained reduced residual network.Finally,pre-training the network with ImageNet dataset and transferthe trained model to the Sentinel-1 dataset to fine-tune the parameter of the network.And the high-precision automatic classification of land use/land cover employing deep learning on small datasets is finally achieved.Experimental results show that the classification accuracy of this algorithm on SAR data set is 95.15%,which verifies the feasibility of the proposedalgorithm.

Key words: land use/land cover classification, Sentinel-1 satellite, deep residual neural network, transfer learning, deep learning

中图分类号: