[1] NOWAK E, JURIE F. Learning visual similarity measures for comparing never seen objects[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis:IEEE, 2007:1-8. [2] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [3] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision & Image Understanding, 2008, 110(3):346-359. [4] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2018:586-595. [5] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [6] ZHANG L, ZHANG L, MOU X, et al. FSIM:a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386. [7] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers. Pacific Grove:IEEE, 2003, 2:1398-1402. [8] 解天鹏,许妙忠,丛铭,等.基于Contourlet-GSSIM的无参考遥感图像质量评价研究[J].测绘通报,2015(1):59-62. [9] 李鸣,张鸿.基于深度特征分析的双线性图像相似度匹配算法[J].计算机应用,2016,36(10):2822-2825,2831 [10] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42:60-88. [11] FISCHER P, DOSOVITSKIY A, BROX T. Descriptor matching with convolutional neural networks:a comparison to SIFT[J]. Computer Science, 2014:1867-1874. [12] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:4353-4361. [13] HAN X, LEUNG T, JIA Y, et al. Matchnet:unifying feature and metric learning for patch-based matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:3279-3286. [14] SIMO-SERRA E, TRULLS E, FERRAZ L, et al. Discrimin-ative learning of deep convolutional feature point descriptors[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago:IEEE, 2015:118-126. [15] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition.[S.l.]:IEEE, 2005:539-546. [16] NOROUZI M, FLEET D J, SALAKHUTDINOV R R. Hamming distance metric learning[C]//Advances in Neural Information Processing Systems. Lake Tohoe:[s.n.], 2012:1061-1069. [17] SIMONYAN K, VEDALDI A, ZISSERMAN A. Learning local feature descriptors using convex optimisation[J]. IEEE Transactions Pattern Analysis Machine Intelligence, 2014, 36(8):1573-1585. [18] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:4353-4361. [19] APPALARAJU S, CHAOJI V. Image similarity using Deep CNN and Curriculum Learning[J]. arXiv preprint arXiv,2017:1709.08761. [20] SUBRAMANIAM A, BALASUBRAMANIAN P, MITTAL A. NCC-net:normalized cross correlation based deep matcher with robustness to illumination variations[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV).Lake Tahoe:IEEE, 2018:1944-1953. [21] BROWN M, HUA G, WINDER S. Discriminative learning of local image descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1):43-57. [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tohoe:[s.n.], 2012:1097-1105. [23] ZBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Boston:IEEE, 2015:1592-1599. [24] 朱玉玲,王建步,王安东,等.融合浅层特征的深度卷积神经网络互花米草遥感监测方法[J].海洋科学,2019,43(7):12-22. [25] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[C]//Advances in Neural Information Processing Systems. Denver:[s.n.], 1994:737-744. [26] 卢健,马成贤,杨腾飞,等.Text-CRNN+Attention架构下的多类别文本信息分类[J/OL].计算机应用研究:1-6[2019-09-21].https://doi.org/10.19734/j.issn.1001-3695.2018.12.0858. |