[1] 杨国鹏,余旭初,冯伍法,等.高光谱遥感技术的发展与应用现状[J].测绘通报,2008(10):1-4. [2] 童庆禧,张兵,郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社,2006. [3] 李志忠,汪大明,刘德长,等. 高光谱遥感技术及资源勘查应用进展[J]. 地球科学(中国地质大学学报),2015,40(8):1287-1294. [4] 罗政.基于HJ_1A高光谱影像的植被类型识别[D].北京:中国地质大学(北京),2018. [5] 张卓然.棉花高光谱特征及其农学参数遥感反演研究[D].杨凌:西北农林科技大学,2018. [6] 刘冰峰.夏玉米不同生育时期生理生态参数的高光谱遥感监测模型[D].杨凌:西北农林科技大学,2018. [7] 于磊,徐明明,陈结祥,等. 水下环境与目标监测高光谱成像仪光学系统[J].光子学报,2018,47(11):102-109. [8] 卢娜,韩平,王纪华.高光谱成像技术在果蔬品质安全无损检测中的应用[J].食品安全质量检测学报,2017,8(12):4594-4601. [9] 谢涛,刘锐,胡秋红,等.基于无人机遥感技术的环境监测研究进展[J].环境科技,2013,26(4):55-60. [10] 段新宇. 旋翼无人机的农业低空高光谱遥感技术探讨[J].中国农业信息,2016(19):85. [11] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707. [12] 周艺,周伟奇,王世新,等.遥感技术在内陆水体水质监测中的应用[J].水科学进展,2004,15(3):312-317. [13] 李俊生,张兵,申倩,等. 航天成像光谱仪CHRIS在内陆水质监测中的应用[J].遥感技术与应用,2007,22(5):593-597. [14] 浦瑞良,宫鹏,约翰R.米勒.美国西部黄松叶面积指数与高光谱分辨率CASI数据的相关分析[J].环境遥感,1993,8(2):112-125. [15] KRUSE F A.Use of airborne imaging spectrometer data to map minerals associated with hydro ther mally altered rocks in the northern grapevine mountains, nevada and california[J]. Remote Sensing of Environment,1998,65(3):227-248. [16] 马利春. 基于GPU的高光谱实时数据处理系统技术研究[D].北京:中国科学院大学,2013. [17] 张达,郑玉权.高光谱遥感的发展与应用[J].光学与光电技术,2013,11(3):67-73. [18] 王跃明,郎均慰,王建宇. 航天高光谱成像技术研究现状及展望[J]. 激光与光电学进展,2013(1):72-79. [19] 颜昌祥.高光谱成像仪发展简况[J].遥感学报,2014,18(S1):11-19. [20] 李素菊,王学军.内陆水体水质参数光谱特征与定量遥感[J]. 地理学与国土研究,2002,18(2):26-30. [21] 葛明锋.基于轻小型无人机的高光谱成像系统研究[D].北京:中国科学院大学,2015. [22] NOTESCO G, KOPACKOVA V, ROJIK P, et al.Mineral classification of land surface using multispectral LWIR and hyperspectral SWIR remote-sensing data:a case study over the Sokolov Lignite Open-pit Mines, the Czech Republic[J]. Remote Sensing,2014,6(8):7005-7025. [23] 孙钊.高光谱遥感的应用[J].贵州教育学院报,2004,15(4):58-61. [24] CAPOLUPO A, KOOISTRA L, BERENDONK C, et al. Estimating plant traits of grasslands from UAV-acquired hyperspectral images:a comparison of statistical approaches[J]. ISPRS International Journal of Geo-Information, 2015,4(4):2792-2820. [25] AASEN H, BURKART A, BOLTEN A, et al. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring:from camera calibrationto quality assurance[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2015,108(5):245-259. [26] BERVEGLIERI A, TOMMASELLI A M G. Exterior orientation of hyperspectral frame images collected with UAV for forest appl ications[J].The Intemational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2016(XL-3/W4):45-50. [27] HONKAVAARA E, KAIVOSOJA J, MÄKYNEN J, et al.Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system[C]//ISPRS Congress. Melbourne:ISPRS, 2012:353-358. [28] 高林,杨贵军,于海洋,等.基于无人机高光谱遥感的冬小麦叶面积指数反演[J].农业工程学报,2016,32(22):114-120. [29] 于丰华.基于无人机高光谱遥感的东北粳稻生长信息反演建模研究[D].沈阳:沈阳农业大学,2017. [30] FLYNN K F, CHAPRA S.Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle[J].Remote Sensing,2014, 6(12):12815-12836. [31] GIARDINO C, BRESCIANI M, VALENTINI E, et al. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake[J]. Remote Sensing of Environment,2015,157:48-57. [32] SU T C.A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images[J]. International Journal of Applied Earth Observation and Geoinformation,2017,58:213-224. [33] ZENG C, RICHARDSON M, KING D J. The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based spectrometer system[J].ISPRS Journal of Photogrammetry and Remote Sensing,2017,130:217-230. [34] VANEGAS F, BRATANOV D, POWELL K, et al.A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data[J]. Sensors,2018,18(1):260-281. [35] ZHONG Y, WANG X, XU Y, et al. MINI-UAV borne hyperspectral remote sensing: a Review[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Fort Worth: IEEE, 2017: 5908-5911. |