测绘通报 ›› 2021, Vol. 0 ›› Issue (7): 34-38.doi: 10.13474/j.cnki.11-2246.2021.0205

• 学术研究 • 上一篇    下一篇

农作物叶片病害迁移学习分步识别方法

赵恒谦1,2, 杨屹峰1, 刘泽龙1, 宋瑞1   

  1. 1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    2. 农业生态大数据分析与应用技术国家地方联合工程研究中心, 安徽 合肥 230601
  • 收稿日期:2021-05-13 修回日期:2021-05-21 出版日期:2021-07-25 发布日期:2021-08-04
  • 通讯作者: 刘泽龙。E-mail:bxlzl0077@163.com
  • 作者简介:赵恒谦(1986-),男,博士,副教授,主要研究方向为遥感智能信息提取与应用等。E-mail:zhaohq@cumtb.edu.cn
  • 基金资助:
    国家自然科学基金(41701488);中国矿业大学(北京)越崎青年学者(2020QN07);农业生态大数据分析与应用技术国家地方联合工程研究中心开放课题(AE201901);中央高校基本科研业务费专项资金(2021YJSDC16)

Step-by-step identification method of crop leaf diseases based on transfer learning

ZHAO Hengqian1,2, YANG Yifeng1, LIU Zelong1, SONG Rui1   

  1. 1. College of Geoscience and Surveying Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China;
    2. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China
  • Received:2021-05-13 Revised:2021-05-21 Online:2021-07-25 Published:2021-08-04

摘要: 农作物病害的准确识别有助于提高农作物的产量与质量。针对作物病害图像训练样本数据量较少的情况,本文采用迁移学习方法结合分步识别模型对多种农作物病害种类进行了识别。将PlantVillage公开数据集中3种农作物的10类作物叶片图像作为训练样本,利用直接识别方法分别对VGG16和ResNet的原始模型和迁移学习模型进行训练,得到模型的分类结果;提出分步识别方法,将训练样本按作物种类和病害类型归类,分别进行模型训练并构建分步识别模型。试验结果表明:利用迁移学习方法能够在原始模型的基础上将识别精度提高20%以上;在其基础上引入分步识别方法并与直接识别方法对比,能够将VGG16和ResNet模型精度再分别提高14%和8%。本文提出的迁移学习分步识别方法能够实现在小样本训练数据情况下的作物病害准确识别,可为作物病害防治提供有效的技术支持。

关键词: 迁移学习, 小样本学习, 卷积神经网络, 分步识别, 作物病害

Abstract: Accurate identification of crop diseases can help improve the yield and quality of crops. As image training sample data of crop disease is limited, this paper adopts the transfer learning method combine with the step-by-step identification model to identify a host of crop disease types. Taking PlantVillage public data set of ten types of crop leaf images of three crops as training samples, the paper uses the direct recognition method to train the original model of VGG16 and ResNet and the model of transfer learning respectively, and obtain the classification results of the model. This paper proposes a step-by-step identification method, the training samples are classified according to the types of crops and disease types, the models are trained separately, and a step-by-step identification model is constructed. The experimental results show that the transfer learning method can increase the recognition accuracy by more than 20% on the basis of the original model. On the basis of this, the step-by-step identification method is introduced and compared with the direct recognition method, the accuracy of the VGG16 and ResNet models is increased by 14% and 8%, respectively. The transfer learning step-by-step identification method proposed in this research can realize the accurate identification of crop diseases in the case of small samples of training data, and can provide effective technical support for crop disease prevention and control.

Key words: transfer learning, few-shot learning, convolutional neural network, step-by-step identification, crop diseases

中图分类号: