测绘通报 ›› 2023, Vol. 0 ›› Issue (10): 111-116.doi: 10.13474/j.cnki.11-2246.2023.0304

• 学术研究 • 上一篇    下一篇

“问题地图”智能检测发展现状与关键技术

梁宇1,2, 左栋1   

  1. 1. 自然资源部地图技术审查中心, 北京 100036;
    2. 中国地质大学(北京)信息工程学院, 北京 100083
  • 收稿日期:2023-02-22 发布日期:2023-10-28
  • 作者简介:梁宇(1991-),男,博士生,工程师,主要研究领域为导航互联网地图的技术审查、互联网"问题地图"和地理信息安全监控、空间分析模型及应用。E-mail:ly1112926@cugb.edu.cn
  • 基金资助:
    公开地图审查服务保障与“问题地图”监控(102121221350000009001)

The development status and key technologies of intelligent check for “problem maps”

LIANG Yu1,2, ZUO Dong1   

  1. 1. Map Supervision Center, Ministry of Natural Resources, Beijing 100036, China;
    2. School of Information Engineering, China University of Geosciences, Beijing 100083, China
  • Received:2023-02-22 Published:2023-10-28

摘要: 为在保护国家领土主权和地理信息安全的前提下,促进测绘地理信息行业的发展,推进“问题地图”智能检测的研究进展,本文综述了“问题地图”检测的发展现状,分析了“问题地图”智能检测的痛点问题,提出通过地理空间大数据挖掘技术获取训练样本,构建统一的地图审查模型和计算模式等关键技术。本文对“问题地图”智能检测的进展有积极的借鉴和促进作用。

关键词: 智能化测绘, 深度学习, 问题地图, 卷积神经网络, 先验知识库

Abstract: In order to promote the development of the surveying and mapping geographic information industry and the research progress of intelligent check for problem map under the premise of protecting national territorial sovereignty and geographic information security, this paper summarizes the development status of problem mapcheck and analyzes the pain points of problem map intelligent check.This study proposes key technologies such as obtaining training samples through geospatial big data mining technology, which includes a unified map review and unified calculation model. This paper is able to have positive references and promotion effect on the progress of intelligent check of problem map.

Key words: intelligent surveying and mapping, deep learning, problem map, convolution neural network, the priori knowledge base

中图分类号: