测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 95-99.doi: 10.13474/j.cnki.11-2246.2023.0334

• 学术研究 • 上一篇    下一篇

改进PointNet++模型在道路杆状物提取中的应用

孙端正1, 高飞1, 叶周润1,2, 吴言安3, 张树峰3, 谢荣晖3   

  1. 1. 合肥工业大学土木与水利工程学院, 安徽 合肥 230009;
    2. 中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室, 湖北 武汉 430077;
    3. 安徽开源路桥有限责任公司, 安徽 合肥 230093
  • 收稿日期:2023-06-26 出版日期:2023-11-25 发布日期:2023-12-07
  • 通讯作者: 叶周润。E-mail:yezhourun329@hotmail.com
  • 作者简介:孙端正(1999—),男,硕士生,主要研究方向为激光点云数据处理。E-mail:1626446601@qq.com
  • 基金资助:
    国家自然科学青年科学基金(41904010);安徽省自然科学基金(2008085MD115);中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室开放基金(SKLGED2022-1-4)

Application of improved PointNet++ model in extracting road rods

SUN Duanzheng1, GAO Fei1, YE Zhourun1,2, WU Yanan3, ZHANG Shufeng3, XIE Ronghui3   

  1. 1. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China;
    2. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China;
    3. Anhui Kai Yuan Highway and Bridge Co., Ltd., Hefei 230093, China
  • Received:2023-06-26 Online:2023-11-25 Published:2023-12-07

摘要: 针对现有道路杆状物提取大多需要针对数据类型人工设计特征、泛用性差、自动化程度低等问题,本文提出一种基于改进PointNet++深度学习网络的道路杆状物语义分割方法,实现了对道路杆状物的提取。首先对原网络模型的感受野、分块大小等参数进行调整,使得该模型更适合道路点云数据;然后针对点云数据不平衡的问题,采用焦点损失函数作为模型的损失函数,使占比较少的类别得到充分训练;最后针对PointNet++网络提取特征时没有考虑邻域内各点特征影响关系的问题,采用邻域特征聚合模块融合邻域信息,提升该网络模型对点云特征的学习能力。为验证所提方法的有效性,使用改进后的网络模型在自建的道路点云组成的数据集上进行了试验,相对于经典PointNet++网络,杆状物类的分割精度明显提升,在简单道路和复杂道路上的交并比(IoU)分别提升了8.44%、15.25%,达到了98.88%、92.50%。

关键词: 三维激光点云, 语义分割, PointNet++, 杆状物, 深度学习

Abstract: Aiming at the problems of manually designed features for data types, poor universality, and low automation in the extraction of existing road rods, a road rod semantic segmentation method based on an improved PointNet++ deep learning network is proposed in this paper, which realizes the segmentation of road rods. First, the parameters of the original network model such as receptive field and block size are adjusted to make the model more suitable for road point cloud data.And then,aiming at the problem of unbalanced point cloud data, the focus loss function is used as the loss function of the model, so that the categories that occupy a relatively small proportion can be fully trained.At last, to address the problem of the PointNet++ network not considering the relationship between the features of each point in the neighborhood when extracting features, a neighborhood feature aggregation module is used to fuse neighborhood information and improve the learning ability of the network model for point cloud features. To verify the effectiveness of the proposed method, an improved network model was used to conduct experiments on a self-built dataset composed of road point clouds. Compared with the classic PointNet++ network, the segmentation accuracy of rod-shaped objects was significantly improved. The intersection over union (IoU) on simple and complex roads increased by 8.44% and 15.25%, respectively, reaching 98.88% and 92.50%.

Key words: 3D laser point cloud, semantic segmentation, PointNet++, rod, deep learning

中图分类号: