测绘通报 ›› 2023, Vol. 0 ›› Issue (4): 49-53.doi: 10.13474/j.cnki.11-2246.2023.0103

• 学术研究 • 上一篇    下一篇

传统村落航拍图像中民族建筑识别的DeepLabV3+改进算法

蔡军1, 温日强1, 江伟1, 严娇2, 卢丽娟1   

  1. 1. 贺州学院建筑与电气工程学院, 广西 贺州 542899;
    2. 贵州云图瞰景地理信息技术有限公司, 贵州 贵阳 550081
  • 收稿日期:2022-05-11 修回日期:2023-02-21 发布日期:2023-04-25
  • 通讯作者: 温日强。E-mail:596825854@qq.com
  • 作者简介:蔡军(1988—),男,硕士,讲师,主要从事BIM+民族建筑方面的研究和教学工作。E-mail:cabanas0315@sina.com
  • 基金资助:
    广西自然科学基金(2020GXNSFBA297163);广西南岭走廊族群文化研究基地开放基金课题(2021KF04);贺州学院高等教育研究专项项目(hzxygj202104);广西高校中青年教师科研基础能力提升项目(2023KY0732);贺州学院校级科研项目(2022ZZZK06)

DeepLabV3+ improved algorithm for national building recognition in traditional village aerial images

CAI Jun1, WEN Riqiang1, JIANG Wei1, YAN Jiao2, LU Lijuan1   

  1. 1. School of architecture and electrical engineering, Hezhou University, Hezhou 542899, China;
    2. Guizhou cloud-aerial view geographic information technology Co., Ltd., Guiyang 550081, China
  • Received:2022-05-11 Revised:2023-02-21 Published:2023-04-25

摘要: 针对传统村落航拍图像难以准确识别民族建筑目标的问题,本文分析了3种深度学习像素分类算法的识别结果,DeepLabV3+、U-Net、PSP-Net等算法的民族建筑识别准确率分别为0.957、0.929、0.943,利用DeepLabV3+算法对传统村落6个典型区域进行测试,测试结果存在的主要问题包括:传统村落部分道路和场地区域被标记为民族建筑,标记的民族建筑区域边缘呈锯齿状。为能够准确地识别传统村落的民族建筑,依托于ArcGIS软件平台对DeepLabV3+算法的民族建筑识别结果进行改进处理,改进处理的内容包括标记区域过滤和标记区域边界清理等。改进处理的结果能在确保民族建筑识别准确率的基础上,优化传统村落航拍图像的民族建筑标记区域边缘的平滑程度。

关键词: 传统村落, 民族建筑, 目标识别, 深度学习, DeepLabV3+

Abstract: Aiming at the problem that traditional village aerial images are difficult to accurately identify national buildings,this paper analyzes the recognition results of three deep learning pixel classification algorithms. The recognition accuracy of national buildings of DeepLabV3+,U-Net and PSP-Net algorithms are 0.957,0.929 and 0.943 respectively. The DeepLabV3+ algorithm is used to test six typical areas of traditional villages. The main problems in the test results include: some roads and site areas in traditional villages are marked as national buildings,and the edges of the marked national buildings area are serrated. In order to accurately identify the national buildings in traditional villages,the national building identification results of DeepLabV3+ algorithm are improved based on ArcGIS software platform. The improved post-processing contents include marked area filtering and marked area boundary cleaning. The improved post-processing results can optimize the smoothness of the edge of the national architecture marked area of the traditional village aerial image on the basis of ensuring the accuracy of national architecture recognition.

Key words: traditional villages, national architecture, target identification, deep learning, DeepLabV3+

中图分类号: