测绘通报 ›› 2023, Vol. 0 ›› Issue (5): 16-20.doi: 10.13474/j.cnki.11-2246.2023.0129

• 滑坡监测与分析 • 上一篇    下一篇

基于DETR的高分辨率遥感影像滑坡体识别与检测

杜宇峰1, 黄亮1,2, 赵子龙3, 李国柱1,3   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    2. 云南省高校高原山区空间信息测绘技术应用工程研究中心, 云南 昆明 650093;
    3. 云南海钜地理信息技术有限公司, 云南 昆明 650093
  • 收稿日期:2022-09-21 发布日期:2023-05-31
  • 通讯作者: 黄亮。E-mail:kmhuangliang@163.com
  • 作者简介:杜宇峰(1996-),男,硕士,主要研究方向为遥感影像目标检测。E-mail:1164151228@qq.com
  • 基金资助:
    云南省基础研究计划(202201AT070164);国家自然科学基金(41961039);云南省基础研究计划(202101AT070102)

Landslide body identification and detection of high-resolution remote sensing image based on DETR

DU Yufeng1, HUANG Liang1,2, ZHAO Zilong3, LI Guozhu1,3   

  1. 1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China;
    3. Yunnan Haiju Geographic Information Technology Co., Ltd., Kunming 650093, China
  • Received:2022-09-21 Published:2023-05-31

摘要: 滑坡灾害因其极大的破坏性而引起高度重视,如何快速、高精度地自动检测滑坡体成为主要研究问题。针对滑坡体检测数据不足、精度低、检测滑坡体不完全等问题,本文结合卷积神经网络(CNN)和Transformer的优点,以Transformer为主体,采用DETR网络实现滑坡体的自动检测。首先,对于数据集数据不足的问题,采用离线数据增强的方式实现滑坡体数据增广;然后,采用编码器-解码器结构的DETR网络结构对增广数据集进行多尺度训练和预测;最后,对试验结果进行定量评价。试验结果表明,采用DETR网络对滑坡体检测的平均准确率(AP)达0.997,可准确识别和检测滑坡体。此外,试验结果还验证了数据增强可有效提升DETR网络对滑坡体的检测精度。

关键词: 滑坡, 目标检测, 卷积神经网络, DETR, 注意力机制

Abstract: Landslide disasters have attracted great attention because of their great destructiveness, and how to quickly and accurately detect landslides has become a major problem. Aiming at the problems of insufficient landslide detection dataset, low accuracy, and incomplete detection of landslide body, this paper combines the advantages of convolutional neural networks (CNN) and Transformer, and adopts the DETR network to realize the automatic detection of landslide body with Transformer as the main body. First of all, in order to solve the problem of insufficient data in the data set, the offline data enhancement method is used to achieve landslide data augmentation; Secondly, the DETR network structure using the encoder-decoder structure performs multi-scale training and prediction of the augmented dataset; Finally, the experimental results are quantitatively evaluated. Experimental results show that the average accuracy(AP)of landslide detection is 0.997,which can accurately identify and detect landslide bodies.In addition,the experimental results also verify that data enhancement can effectively improve the detection accuracy of landslide bodies in the DETR network.

Key words: landslide, object detection, convolutional neural network, DETR, attention mechanism

中图分类号: