测绘通报 ›› 2023, Vol. 0 ›› Issue (7): 39-43.doi: 10.13474/j.cnki.11-2246.2023.0198

• 学术研究 • 上一篇    下一篇

ICESat-2与Sentinel-2数据融合的深度学习浅滩水深测量

钟静1, 孙杰1, 赖祖龙1, 谌一夫2   

  1. 1. 中国地质大学(武汉)地理与信息工程学院, 湖北 武汉 430074;
    2. 中国地质大学(武汉)计算机学院, 湖北 武汉 430074
  • 收稿日期:2022-11-22 出版日期:2023-07-25 发布日期:2023-08-08
  • 通讯作者: 孙杰。E-mail:jiesun@cug.edu.cn
  • 作者简介:钟静(1997-),女,硕士生,主要研究方向为海洋遥感。E-mail:jingzhong@cug.edu.cn
  • 基金资助:
    国家自然科学基金(42171373)

A deep learning method for nearshore bathymetry with ICESat-2 and Sentinel-2 datasets

ZHONG Jing1, SUN Jie1, LAI Zulong1, SHEN Yifu2   

  1. 1. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China;
    2. School of computing, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2022-11-22 Online:2023-07-25 Published:2023-08-08

摘要: 目前卫星测深(SDB)被广泛应用于近海岸水深测量,然而常用的经验模型较简单,无法适用于各类复杂浅滩环境。为突破传统方法的局限性,本文提出一种ICESat-2与Sentinel-2数据融合的深度学习浅滩水深测量方法。以美国密西西比州猫岛(CI)、巴克岛(BI)为研究区,利用ICESat-2提取先验水深点,再基于Sentinel-2数据训练一维卷积神经网络(1-DCNN)以获取研究区水深图;同时采用波段比值模型(BR)、随机森林(RF)和多层感知器(MLP)作为对比方法进行精度定量分析发现,本文方法在CI、BI测得水深的均方根误差和决定系数分别为0.20 m、0.94和0.95 m、0.95,精度验证优于其他方法,因此该方法提高了水深反演精度。

关键词: 卫星测深, ICESat-2, Sentinel-2, 深度学习, 机器学习

Abstract: Currently, satellite-derived bathymetry (SDB) is widely used for nearshore bathymetry. However, the commonly used empirical models are too simple to be applied to various complex shore environments. To break through the limitations of traditional methods, this paper proposes a deep learning method for nearshore bathymetry with ICESat-2 and Sentinel-2 datasets. Cat Islands (CI) and Buck Island (BI) are used as the study areas. ICESat-2 is used to extract a priori bathymetry points, and then a one dimensional convolutional neural network(1DCNN) is trained on the Sentinel-2 data to obtain a bathymetry map of the study area. band ratio (BR), random forest (RF) and multilayer perceptron (MLP) are also used as comparison methods. Through quantitative analysis of accuracy, the root mean square error and coefficient of determination of water depth measured by the proposed method in CI and BI are 0.20 m, 0.94 and 0.95 m, 0.95, respectively, which verify the accuracy better than other comparative methods and improved the accuracy of water depth inversion.

Key words: satellite-derived bathymetry, ICESat-2, Sentinel-2, deep learning, machine learning

中图分类号: