[1] SIMARRO G,CALVETE D,PLOMARITIS T A,et al. The influence of camera calibration on nearshore bathymetry estimation from UAV videos[J]. Remote Sensing,2021,13(1):150. [2] 彭认灿,董箭,贾帅东,等. 数字水深模型建模技术研究进展与展望[J]. 测绘学报,2022,51(7):1575-1587. [3] ALBRIGHT A,GLENNIE C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(5):900-904. [4] SU H,LIU H,WANG L,et al. Geographically adaptive inversion model for improving bathymetric retrieval from satellite multispectral imagery[J]. IEEE transactions on Geoscience and Remote Sensing,2013,52(1):465-476. [5] 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报,2017,46(10):1786-1794. [6] 黄荣永,余克服,王英辉,等. 珊瑚礁遥感研究进展[J]. 遥感学报,2019,23(6):1091-1112. [7] KANNO A,KOIBUCHI Y,ISOBE M. Statistical combination of spatial interpolation and multispectral remote sensing for shallow water bathymetry[J]. IEEE Geoscience and Remote Sensing Letters,2010,8(1):64-67. [8] ZHANG X,CHEN Y,LE Y,et al. Nearshore bathymetry based on ICESat-2 and multispectral images:comparison between Sentinel-2,Landsat-8,and Testing Gaofen-2[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:2449-2462. [9] KERR J M,PURKIS S. An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data[J]. Remote Sensing of Environment,2018,210:307-324. [10] PARRISH C E,MAGRUDER L A,NEUENSCHWANDER A L,et al. Validation of ICESat-2 atlas bathymetry and analysis of ATLAS's bathymetric mapping performance[J]. Remote Sensing,2019,11(14):1634. [11] MCGILL M,MARKUS T,SCOTT V S,et al. The multiple altimeter beam experimental LiDAR (MABEL):an airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology,2013,30(2):345-352. [12] TONION F,PIROTTI F,FAINA G,et al. A machine learning approach to multispectral satellite derived bathymetry[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,3:565-570. [13] 刘瑾璐. 顾及底质类型的光学浅海水深遥感反演研究[D]. 南京:南京信息工程大学,2022. [14] STUMPF R P,HOLDERIED K,SINCLAIR M. Determination of water depth with high-resolution satellite imagery over variable bottom types[J]. Limnology and Oceanography,2003,48(1):547-556. [15] PAN Zhigang,GLENNIE C,LEGLEITER C,et al. Estimation of water depths and turbidity from hyperspectral imagery using support vector regression[J]. IEEE Geoscience and Remote Sensing Letters,2015,12(10):2165-2169. [16] LAI W,LEE Z,WANG J,et al. A portable algorithm to retrieve bottom depth of optically shallow waters from top-of-atmosphere measurements[J]. Journal of Remote Sensing,2022:1-16. [17] ZHANG Jiashu,KEREKES J,CSATHO B,et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City,QC,Canada:IEEE,2014:177-180. [18] LE Zhongping,HU Chuanmin,ARNONE R,et al. Impact of sub-pixel variations on ocean color remote sensing products[J]. Optics Express,2012,20(19):20844-20854. [19] DUBEY A K,JAIN V. Comparative study of convolution neural network's ReLU and leaky-relu activation functions[M]//Applications of Computing,Automation and Wireless Systems in Electrical Engineering. Singapore:Springer,2019:873-880. |