测绘通报 ›› 2023, Vol. 0 ›› Issue (9): 113-116,143.doi: 10.13474/j.cnki.11-2246.2023.0274

• 技术交流 • 上一篇    下一篇

基于深度BP/ELMAN神经网络的山区GNSS高程转换精度分析

魏德宏1, 禤键豪2, 杨嘉伟3, 张兴福1, 余旭1   

  1. 1. 广东工业大学测绘工程系, 广东 广州 510006;
    2. 同济大学测绘与地理信息学院, 上海 200092;
    3. 临沂市自然资源和规划局, 山东 临沂 276000
  • 收稿日期:2022-12-15 发布日期:2023-10-08
  • 通讯作者: 禤键豪。E-mail:jhxuan1999@163.com
  • 作者简介:魏德宏(1966—),男,讲师,主要从事工程测量教学和研究工作。E-mail:weidh2011@163.com
  • 基金资助:
    国家自然科学基金(42074003)

Accurcy analysis of GNSS height transformation based on deep BP/ELMAN neural network in the mountains

WEI Dehong1, XUAN Jianhao2, YANG Jiawei3, ZHANG Xingfu1, YU Xu1   

  1. 1. Surving and Mapping Engineering Department, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China;
    3. Linyi Natural Resources and Planning Bureau, Linyi 276000, China
  • Received:2022-12-15 Published:2023-10-08

摘要: 将GNSS测量的大地高以较高精度转换为工程所需的正常高具有重要的实用价值。本文利用GSVS2017项目高精度的GNSS水准数据,分析了深度BP/ELMAN神经网络、广义回归神经网络(GRNN)、径向基函数神经网络(RBFNN)、支持向量机回归(SVR)、二次曲线拟合和曲面拟合等方法用于GNSS高程转换的精度。试验结果表明:①在训练点间距为50、30、15、10、5 km时,采用隐含层激励函数为ReLU的深度BP/ELMAN神经网络,其精度比GRNN、RBFNN、SVR、二次曲线拟合和曲面拟合方法高;②利用隐含层激励函数为ReLU的深度BP/ELMAN神经网络进行GNSS高程转换,5种训练点间距均可使90%以上检核点间的高差满足四等水准测量精度,75%以上满足三等水准测量精度要求,训练点间距为5 km时,55%以上的高差可达到二等水准测量精度要求。

关键词: 深度学习, 神经网络, GNSS高程转换, 精度分析

Abstract: It is of great practical value to transform the GNSS geodetic height into the normal height with higher precision in the mountains. This paper uses the high-precision GNSS leveling data of the GSVS2017 project to analyze the accuracy of GNSS height transformation based on deep BP/ELMAN neural network, general regression neural network (GRNN), radial basis function neural network (RBFNN), support vector machine regression (SVR), quadratic curve fitting and surface fitting, etc. The results show that: ①When the distance between training points is 50, 30, 15, 10 and 5 km, the deep BP/ELMAN neural network with the hidden layer activation function ReLU can obtain higher precision results, and they are more accurate than GRNN, RBFNN, SVR, quadratic curve fitting and surface fitting. ②The deep BP/ELMAN neural network with the hidden layer activation function ReLU are used for GNSS height transformation. Among the five kinds of training point spacing, more than 90% of the height difference can meet the fourth-order leveling accuracy, and more than 75% of height difference can meet the third-order leveling accuracy; when the distance between training points spacing is 5 km, more than 55% of the height difference can meet the second-order leveling accuracy.

Key words: deep learning, neural network, GNSS height transformation, accuracy analysis

中图分类号: