测绘通报 ›› 2023, Vol. 0 ›› Issue (9): 144-149.doi: 10.13474/j.cnki.11-2246.2023.0280

• 技术交流 • 上一篇    下一篇

甘肃省地表要素遥感解译样本库建设与应用

张宝安, 高小龙, 金仔燕, 马兰花   

  1. 甘肃省地图院, 甘肃 兰州 730000
  • 收稿日期:2023-06-12 发布日期:2023-10-08
  • 通讯作者: 高小龙。E-mail:381940392@qq.com
  • 作者简介:张宝安(1966—),男,高级工程师,主要从事基础测绘工作。E-mail:zhangba@gscc.gov.cn
  • 基金资助:
    甘肃省自然资源厅科技项目(202223)

Construction and application of remote sensing interpretation sample database for surface elements

ZHANG Baoan, GAO Xiaolong, JIN Zaiyan, MA Lanhua   

  1. Mapping Institutiion of Gansu Province, Lanzhou 730000, China
  • Received:2023-06-12 Published:2023-10-08

摘要: 面对自然资源遥感监测体系建设和省级基础测绘重点要素年度更新需求,本文以地理国情地表覆盖为主要参考数据,提出了省域遥感解译样本库的建设方法。首先制定了适用于深度学习的甘肃省自然资源遥感解译样本分类体系和顾及地学知识的样本选取标准,据此构建了囊括不同尺度单元的全要素、单要素和变化检测3类样本数据集;然后基于自主研建的甘肃省遥感解译样本库平台,构建了从样本采集、模型训练、智能解译到质量评估的全链路技术体系。试验结果表明,面向不同尺度区域,地物提取准确率达90%,变化检测准确率达74%,实现了地表要素从粗粒度到细粒度的自适应解译。研究成果在甘肃省省级基础测绘更新、城市国土空间监测及非农化监测等领域进行了业务化应用,提高了自然资源管理精准化和智能化水平。

关键词: 智能解译, 变化检测, 平台架构, 深度学习, 样本库

Abstract: In the face of the construction of natural resource remote sensing monitoring system and the annual update demand for key elements of provincial basic surveying and mapping,a method for constructing a provincial remote sensing interpretation sample database is proposed based on geographical and national surface coverage as the main reference data. Firstly,a sample classification system for remote sensing interpretation of natural resources in Gansu province suitable for deep learning and sample selection standards that take into account geoscience knowledge are developed. Based on this,three types of sample datasets including full element,single element,and change detection are constructed,including different scale units. Then,based on the self-developed Gansu province remote sensing interpretation sample library platform,a full link technical system from sample collection,model training,intelligent interpretation to quality assessment is constructed. The experimental results show that for different scale regions,the accuracy of feature extraction reaches 90%,and the accuracy of change detection reaches 74%,achieving adaptive interpretation of surface elements from coarse to fine granularity. The research results have been applied in the provincial basic surveying and mapping update,urban land space monitoring,non-agricultural monitoring and other fields in Gansu province,improving the accuracy and intelligence of natural resource management.

Key words: intelligent interpretation, change detection, platform architecture, deep learning, sample database

中图分类号: