测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 90-95.doi: 10.13474/j.cnki.11-2246.2025.0415

• 学术研究 • 上一篇    

改进特征金字塔池化的遥感影像障碍物提取

孙凯, 徐青, 张瑞鑫, 苏友能   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450000
  • 收稿日期:2024-09-24 发布日期:2025-04-28
  • 通讯作者: 徐青。E-mail:xq1982_no.1@163.com
  • 作者简介:孙凯(2001—),男,硕士生,研究方向为遥感影像智能解译。E-mail:sk15879115779@163.com
  • 基金资助:
    国家自然科学基金(42101454)

Improved feature pyramid pooling for obstacle rxtraction in remote sensing images

SUN Kai, XU Qing, ZHANG Ruixin, SU Youneng   

  1. School of Geospatial Information, University of Information Engineering, Zhengzhou 450000, China
  • Received:2024-09-24 Published:2025-04-28

摘要: 在高分辨率遥感影像中提取出的障碍物是进行越野路径规划的重要依据之一,精确的障碍物位置能够大大降低通行成本。传统的测绘方法提取障碍物效率低,且易受到人为因素和地形的影响,不适用于复杂的环境。当前的深度学习方法在提取居民地、水系等障碍物时存在特征丢失、分辨能力不强等问题,尤其是在小尺度地物的分辨上精度较低,提取的结果无法满足需求。为了解决这些问题,本文提出了基于特征金字塔注意力网络(ResT-PNet)提取遥感影像地物的方法,采用特征金字塔池化模块获取全局语义信息。首先,构建了特征融合模块,融合不同尺度的特征信息,增强特征提取效果;然后,引入了注意力机制中的空间注意力和通道注意力,以减少细节信息的丢失,整合局部特征与全局特征;最后,设置了对比试验与模型应用性验证。结果表明,本文模型具有更高的准确率,能够更好地分辨小尺度的障碍物,提取出的结果能够为越野路径规划提供支撑。

关键词: 地物提取, 全卷积神经网络, 注意力机制, 特征金字塔池化, 路径规划

Abstract: The extraction of obstacles from high-resolution remote sensing images is one of the crucial bases for off-road path planning, as accurate obstacle locations can significantly reduce transit costs. Traditional surveying methods for obstacle extraction are inefficient and susceptible to human factors and terrain influences, making them unsuitable for complex battlefield environments. Current deep learning methods face issues such as feature loss and inadequate resolution when extracting obstacles like residential areas and water systems, particularly struggling with precision in identifying small-scale features, resulting in outputs that fail to meet requirements. To address these challenges, a method utilizing a feature pyramid attention network (ResT-PNet) for extracting features from remote sensing images has been proposed in this paper.Employing a feature pyramid pooling module to obtain global semantic information.Firstly, a feature fusion module has been constructed to integrate feature information across different scales, enhancing the feature extraction efficacy. Then, spatial and channel attention mechanisms have been introduced to minimize the loss of detail information and to integrate local and global features. Finally, comparative experiments and model applicability validation have been conducted. The results indicating that the proposed model achieves higher accuracy and better distinguishes small-scale obstacles, thereby providing support for off-road path planning.

Key words: feature extraction, convolutional neural network, attention mechanism, feature pyramid, path planning

中图分类号: