[1] 郝中豫,高光星,王祥,等.低空遥感在违法建筑快速监测中的应用[J].测绘信息与工程,2009,34(3):18-20. [2] 刘直芳,张剑清.城区变化检测的一种方法[J].测绘通报,2001(2):1-2. [3] SHI Z H,WU C W,LI C J,et al.Object detection techniques based on deep learning for aerial remote sensing images:a survey[J].Journal of Image and Graphics,2023,28(9):2616-2643. [4] 张祖勋,姜慧伟,庞世燕,等.多时相遥感影像的变化检测研究现状与展望[J].测绘学报,2022,51(7): 1091-1107. [5] 张戬,高雅.深度学习遥感影像解译技术在耕地保护中的应用[J].测绘通报,2023(8): 142-145. [6] 张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报,2017,46(10): 1447-1459. [7] 冯权泷,陈泊安,李国庆,等.遥感影像样本数据集研究综述[J].遥感学报,2022,26(4): 589-605. [8] YANG Yi,NEWSAM S.Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.California:ACM Press,2010: 270-279. [9] DAI Dengxin,YANG Wen.Satellite image classification via two-layer sparse coding with biased image representation[J].IEEE Geoscience and Remote Sensing Letters,2011,8(1): 173-176. [10] XIA Guisong,HU Jingwen,HU Fan,et al.AID: a benchmark data set for performance evaluation of aerial scene classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(7): 3965-3981. [11] ZOU Qin,NI Lihao,ZHANG Tong,et al.Deep learning based feature selection for remote sensing scene classification[J].IEEE Geoscience and Remote Sensing Letters,2015,12(11): 2321-2325. [12] TONG Xinyi,XIA Guisong,LU Qikai,et al.Land-cover classification with high-resolution remote sensing images using transferable deep models[EB/OL].(2018-07-16)[2022-09-22].https://arxiv.org/abs/1807.05713. [13] WANG Guoli,FAN Bin,XIANG Shiming,et al.Aggregating rich hierarchical features for scene classification in remote sensing imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(9): 4104-4115. [14] HUANG Bo,ZHAO Bei,SONG Yimeng.Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J].Remote Sensing of Environment,2018,214: 73-86. [15] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-06-17)[2022-09-21].https://arxiv.org/abs/1706.05587. [16] 陶超,阴紫薇,朱庆,等.遥感影像智能解译: 从监督学习到自监督学习[J].测绘学报,2021,50(8): 1122-1134. |