测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 51-56.doi: 10.13474/j.cnki.11-2246.2026.0109

• 学术研究 • 上一篇    下一篇

基于时序InSAR与BiGRU的库岸滑坡形变分析与预测

刘艺梁1,2,3, 李永奕1,2,3, 朱前1,2,3, 左清军1,2,3, 樊西丰1,2,3, 宋琨1,2,3, 申高伟1,2,3, 汤罗圣4   

  1. 1. 湖北长江三峡滑坡国家野外科学观测研究站, 湖北 宜昌 443002;
    2. 防灾减灾湖北省重点实验室, 湖北 宜昌 443002;
    3. 三峡大学土木与建筑学院, 湖北 宜昌 443002;
    4. 湖北省交通规划设计院股份有限公司, 湖北 武汉 430051
  • 收稿日期:2025-05-27 发布日期:2026-02-03
  • 通讯作者: 李永奕。E-mail:1300839556@qq.com
  • 作者简介:刘艺梁(1985—),男,博士,副教授,研究方向为库岸地质灾害遥感识别与监测预警。E-mail:lyl@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金(41807294);防灾减灾湖北省重点实验室开放基金(2025KJZ02);湖北省交通运输厅科技项目(2023-121-4-2);三峡大学土木与建筑学院科研创新基金(2024SSCX003);湖北省科技计划(2025CSA068)

Analysis and prediction of reservoir bank landslide deformation based on time series InSAR and BiGRU

LIU Yiliang1,2,3, LI Yongyi1,2,3, ZHU Qian1,2,3, ZUO Qingjun1,2,3, FAN Xifeng1,2,3, SONG Kun1,2,3, SHEN Gaowei1,2,3, TANG Luosheng4   

  1. 1. National Field Observation and Research Station of Landslides in Three Gorges Reservoir Area of Yangtze River, Yichang 443002, China;
    2. Hubei Key Laboratory of Disaster Prevention and Mitigation, Yichang 443002, China;
    3. College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China;
    4. Hubei Provincial Communications Planning and Design Institute Co., Ltd., Wuhan 430051, China
  • Received:2025-05-27 Published:2026-02-03

摘要: 三峡库区受地质构造与水库蓄水影响,滑坡灾害频发,准确的监测与预测滑坡形变对保障区域安全至关重要。针对传统监测方法在大范围、高精度形变监测方面的局限性,本文利用2021年1月至2023年12月的73景Sentinel-1A升轨影像数据,采用斯坦福永久散射体(StaMPS)技术获取了三峡库区三门洞滑坡的地表形变信息,通过筛选高相干性控制点分析滑坡变形特征,并结合全球导航卫星系统(GNSS)数据进行验证。同时,采用ARIMA模型与CNN-BiGRU-Attention模型,对高形变区控制点位移进行预测。结果表明:三门洞滑坡前缘及中部为高形变区,形变速率介于-108.9~-43.9 mm/a;组合预测模型均方根误差为1.11 mm,平均绝对误差为0.97 mm,显著提升了预测精度,为地质灾害智能预警提供了新的技术方案。

关键词: 时序InSAR, StaMPS, 库岸滑坡, 形变分析, 预测模型

Abstract: Due to the influence of geological structure and reservoir storage,landslides are frequent in the Three Gorges Reservoir area.Accurate monitoring and prediction of landslide deformation is crucial to ensuring regional safety.Due to the limitations of traditional methods for monitoring large-scale,high-precision deformation,this paper uses 73 Sentinel-1A up-orbit images from January 2021 to December 2023 and the Stanford method for persistent scatterers (StaMPS) technique to analyze the Sanmendong landslide's surface deformation in the Three Gorges Reservoir area.We systematically analyze the landslide deformation characteristics by screening the highly coherent control points and introduce global navigation satellite system (GNSS) data for validation.At the same time,we combine the ARIMA model with the CNN-BiGRU-Attention model to predict the displacement of the control points in the highly deformed area.The results show that the leading edge and middle part of the Sanmendong landslide are high-deformation areas with deformation rates ranging from -108.9 to -43.9 mm/a.The combined prediction model's RMSE is 1.11 mm and its MAE is 0.97 mm.It significantly improves the prediction accuracy and provides a new technical solution for intelligent early warning of geologic hazards.

Key words: time series InSAR, StaMPS, bank landslide, deformation analysis, prediction model

中图分类号: