测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 47-50,71.doi: 10.13474/j.cnki.11-2246.2026.0108

• 学术研究 • 上一篇    下一篇

一种新的海岸线提取模型

郭海瑞1, 仉天宇1,2,3, 曹瑞雪1,2,3   

  1. 1. 广东海洋大学海洋与气象学院近海海洋变化与灾害预警技术实验室, 广东 湛江 524088;
    2. 广东海洋大学陆架及深远海气候、资源与环境广东普通高校重点实验室, 广东 湛江 524088;
    3. 广东海洋大学自然资源部空间海洋遥感与应用重点实验室, 广东 湛江 524088
  • 收稿日期:2025-05-22 发布日期:2026-02-03
  • 通讯作者: 曹瑞雪。E-mail:caorx@gdou.edu.cn
  • 作者简介:郭海瑞(1999―),女,硕士生,主要研究方向为遥感图像处理。E-mail:guohairui0922@163.com
  • 基金资助:
    国家重点研发计划(2021YFC3101801);国家自然科学基金重大研究计划(92158201);山东省创新发展研究院智库项目;国家自然科学基金面上项目(42476219);国家外专项目(S20240134);广东省教育厅创新团队项目(2023KCXTD015)

A new coastline extraction model

GUO Hairui1, ZHANG Tianyu1,2,3, CAO Ruixue1,2,3   

  1. 1. Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China;
    2. Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Ocean, Guangdong Ocean University, Zhanjiang 524088, China;
    3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Guangdong Ocean University, Zhanjiang 524088, China
  • Received:2025-05-22 Published:2026-02-03

摘要: 在海陆交界区域,由于环境复杂多变,遥感影像的海陆边界光谱没有明显区分度,导致精准确定海岸线位置变得困难。针对该问题,本文构建了一种融合边缘检测神经网络与灰色理论的海岸线提取模型(EGOM)。该模型首先使用多尺度模块组SEM,有效捕捉多尺度特征;然后借助跨分辨率局部融合和二次融合机制,对边缘预测图进行优化;最后引入基于灰色理论的伪边缘剔除策略。试验结果表明,该模型平均偏移量为18.89 m,均方根误差为21.05 m,且能够有效去除伪边缘,整体性能优于其他几种海岸线提取方法。

关键词: 遥感影像, 海岸线提取, 边缘检测神经网络, 灰色理论, 伪边缘

Abstract: In the area at the junction of land and sea in remote sensing images,due to the complex and changeable environment,the spectra of the boundary between land and sea are not clearly distinguishable,which makes it difficult to accurately determine the location of the coastline.To solve this problem,this paper constructs a coastline extraction model (EGOM) that integrates an edge detection neural network and grey theory.The model uses a multi-scale module group SEM,which can effectively capture multi-scale features.With the help of cross-resolution local fusion and secondary fusion mechanisms,the edge prediction map is optimized.Finally,a pseudo-edge culling strategy based on grey theory is introduced.Experimental results show that the model has an average offset index of 18.89 m,a root mean square error of 21.05 m,and can effectively remove pseudo-edges.Its overall performance is better than several other coastline extraction methods.

Key words: remote sensing imagery, shoreline extraction, edge detection neural network, grey theory, pseudo-edges

中图分类号: