[1] 李百寿,李灵芝,张强.一种MBR约束下的高分光学影像直角建筑物提取与标绘方法[J].测绘通报,2018(4):16-22. [2] 丁亚洲,冯发杰,吏军平,等.多星形约束图割与轮廓规则化的高分遥感影像直角建筑物提取[J].测绘学报,2018,47(12):1630-1639. [3] OK A O, SENARAS C, YUKSEL B, et al. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1701-1717. [4] HUANG X, ZHANG L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):257-272. [5] 伍广明,陈奇,SHIBASAKI R,等.基于U型卷积神经网络的航空影像建筑物检测[J].测绘学报,2018,47(6):864-872. [6] MNIH V. Machine learning for aerial image labeling[D]. Toronto:University of Toronto, 2013. [7] FUKUSHIMA K. Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202. [8] CLEVERT D, UNTERTHINER T, HOCHREITER S, et al. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//International Conference on Learning Representations.[S.l.]:IEEE, 2016. [9] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C]//32nd Conference on Neural Information Processing Systems. Montréal:[s.n.], 2018. [10] CHEN Y, FAN R, BILAL M, et al. Multilevel cloud detection for high-resolution remote sensing imagery using multiple convolutional neural networks[J]. ISPRS International Journal of Geo-information, 2018, 7(5):267-290. [11] MA X, WANG H, GENG J, et al. Spectral-spatial classification of hyperspectral image based on deep auto-encoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):4073-4085. [12] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2017. [13] SUZUKI S, ABE K. Topological structural analysis of digitized binary images by border following[J]. Graphical Models Graphical Models and Image Processing Computer Vision, Graphics, and Image Processing, 1985, 30(1):32-46. [14] BOYKOV Y, JOLLY M. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//International Conference on Computer Vision.[S.l.]:IEEE, 2001. [15] BOYKOV Y, KOLMOGOROV V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1124-1137. [16] 杜守基,邹峥嵘,张云生,等.融合LiDAR点云与正射影像的建筑物图割优化提取方法[J].测绘学报,2018,47(4):519-527. [17] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE, 2017. [18] RONNEBERGER O, FISCHER P, BROX T, et al. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2015. |