测绘通报 ›› 2019, Vol. 0 ›› Issue (12): 50-55.doi: 10.13474/j.cnki.11-2246.2019.0385

• 学术研究 • 上一篇    下一篇

双分支网络架构下的图像相似度学习

卢健, 马成贤, 周嫣然, 李哲   

  1. 西安工程大学电子信息学报, 陕西 西安 710048
  • 收稿日期:2019-03-25 修回日期:2019-09-22 发布日期:2020-01-03
  • 作者简介:卢健(1978-),男,博士,副教授,主要研究方向为AI机器人应用创新。E-mail:406170365@qq.com
  • 基金资助:
    国家自然科学基金(51607133);陕西省教育厅专项科学研究计划(17JK0332);陕西省科技厅科技发展计划(2011K06-01);西安市碑林区应用技术研发项目(GX1807)

Image similarity learning via two-branch network architecture

LU Jian, MA Chengxian, ZHOU Yanran, LI Zhe   

  1. School of Electronic and Information, Xi'an Polytechnic University, Xi'an 710048, China
  • Received:2019-03-25 Revised:2019-09-22 Published:2020-01-03

摘要: 图像相似度学习是指通过网络学习图像内容信息来预测两张图像是否匹配。迄今为止,基于卷积神经网络改进的变体网络有效提升了学习效率,但由于提取特征比较单一无法准确描述图像特征,导致相似度学习效率较低。为此,本文提出一种基于卷积神经网络结构的双分支网络。该网络为左右分支网络结构相同,但权值不共享,网络输入为双分支输入。首先由左右分支网络分别提取单通道图像特征;然后通过特征融合层进行特征融合;最后将融合特征直接输入全连接层进行相似度学习,既改善了提取的图像特征多样性,又加快了模型训练速度。在实验室工业相机拍摄的芯片卡槽图像数据集上进行对比试验,结果表明,相比其他模型,本文提出的模型具有较强的网络学习能力和模型泛化能力,准确率高达97.96%。

关键词: 图像相似度学习, 卷积神经网络, 双分支网络, 权值不共享, 特征融合

Abstract: Image similarity learning is to predict whether two images match by learning image content information through the network. Until now, the improved variant network based on convolutional neural network has effectively improved the learning efficiency. However, because the extracted features are relatively single and cannot accurately describe the image features, the similarity learning efficiency is low. To this end, a two-branch network based on a convolutional neural network structure is proposed. The network is a left and right branch network, the structure is the same but the weights are not shared, and the network input is a two-branch input. Firstly, the single channel image features are extracted by the left and right branch networks respectively. Then the features fused through the feature fusion layer. Finally, the fusion feature is directly input into the fully connected layer for similarity learning. It not only improves the feature diversity of the extracted images, but also speeds up the training of the model. Comparative experiments were carried out on the chip card slot image dataset taken by the laboratory industrial camera. The experimental results show that compared with other models, the proposed model has strong network learning ability and model generalization ability, and the accuracy rate is 97.96%.

Key words: image similarity learning, convolutional neural network, two-branch network, weight not shared, feature fusion

中图分类号: