[1] 朱云涛,李飞,胡钊政,等. 基于三维点云语义地图表征的智能车定位[J]. 交通信息与安全,2021,39(6): 143-152. [2] WU Zhenzhen,LIU Huiyun,LI Kuangyu,et al. Extraction of rod-like objects from vehicle-borne LiDAR data[C]//Proceedings of the 2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015). Xiamen:SPIE,2016,9901:30-35. [3] 朱岩彬,徐启恒,杨俊涛,等. 一种层次化的车载激光点云中杆状地物提取方法研究[J]. 地理信息世界,2019,26(6): 56-60. [4] 李永强,李鹏鹏,董亚涵,等. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报,2020,49(6): 724-735. [5] 刘华,葛锦涛,张晓鸣,等. 利用多尺度扩展高斯影像特征提取车载点云杆状道路设施的方法研究[J]. 东华理工大学学报(自然科学版),2022,45(2): 183-188. [6] QI C R,SU H,NIEBNER M,et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas : IEEE,2016: 5648-5656. [7] MA Chao,GUO Yulan,YANG Jungang,et al. Learning multi-view representation with LSTM for 3D shape recognition and retrieval[J]. IEEE Transactions on Multimedia,2019,21(5): 1169-1182. [8] MATURANA D,SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Hamburg:IEEE,2015: 922-928. [9] RIEGLER G,ULUSOY A O,GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE,2017: 6620-6629. [10] LE T,DUAN Ye. PointGrid: a deep network for 3D shape understanding[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018: 9204-9214. [11] QI C R,YI Li,SU Hao,et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York: ACM,2017: 5105-5114. [12] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice:IEEE,2017: 2999-3007. [13] CHARLES R Q,HAO Su,MO Kaichun,et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017: 77-85. [14] ARMENI I,SENER O,ZAMIR A R,et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016: 1534-1543. [15] 黄郑,顾徐,王红星,等. 基于改进PointNet++的输电杆塔点云语义分割模型[J]. 中国电力,2023,56(3): 77-85. |