[1] 冯世盛,徐青,朱新铭,等.基于地形数据的长距离越野路径快速规划方法研究[J].地球信息科学学报,2022,24(9):1742-1754. [2] 李德仁,王密.高分辨率光学卫星测绘技术综述[J].航天返回与遥感,2020,41(2):1-11. [3] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:3431-3440. [4] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.Cham:Springer International Publishing,2015:234-241. [5] CHEN L C,ZHU Yukun,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of 2018 Computer Vision-ECCV.Cham:Springer International Publishing,2018:833-851. [6] ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al.Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6230-6239. [7] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. [8] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2024-06-05].https://www.researchgate.net/publication/317679203_Rethinking_Atrous_Convolution_for_Semantic_Image_Segmentation. [9] WANG J,SUN K,CHENG T,et al.Deep high-resolution representation learning for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3349-3364. [10] CAI Yuxiang,YANG Yingchun,ZHENG Qiyi,et al.BiFDANet:unsupervised bidirectional domain adaptation for semantic segmentation of remote sensing images[J].Remote Sensing,2022,14(1):190. [11] LI Yanghao,CHEN Yuntao,WANG Naiyan,et al.Scale-aware trident networks for object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:6053-6062. [12] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Long Beach:ACM Press,2017:6000-6010. [13] 张宸嘉,朱磊,俞璐.卷积神经网络中的注意力机制综述[J].计算机工程与应用,2021,57(20):64-72. [14] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[C]//Proceedings of 2020 International Conference on Learning Representations.[S.l.]:ICLR,2020. [15] LIN Hezheng,CHENG Xing,WU Xiangyu,et al.CAT:cross attention in vision transformer[C]//Proceedings of 2022 IEEE International Conference on Multimedia and Expo.Taipei:IEEE,2022:1-6. [16] 王一中,胡亚琦,吴小所,等.基于改进Swin Transformer的遥感图像语义分割方法[J].计算机工程与应用,2024,60(11):194-203. [17] 邓飞,罗文,蒋先艺,等.V型Transformer的遥感影像地物提取方法[J].石油地球物理勘探,2024,59(4):745-754. [18] 龚健雅,张展,贾浩巍,等.面向多源数据地物提取的遥感知识感知与多尺度特征融合网络[J].武汉大学学报(信息科学版),2022,47(10):1546-1554. [19] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of 2018 Computer Vision-ECCV.Cham:Springer International Publishing,2018:3-19. [20] LIU Z,LIN Y,CAO Y,et al.Swin trainformer:hierarchical vision trainformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vsion.[S.l.]:IEEE,2021:10012-10022. [21] 熊彬,张双德.基于改进PSPNet的卫星遥感图像建筑物语义分割算法[J].遥感信息,2023,38(4):73-79. [22] 国家技术监督局.国家基本比例尺地图图式第1部分:1∶500,1∶1000,1∶2000地形图图式:GB/T 20257.1—2007[S].北京:中国标准出版社,2007. |