测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 106-113.doi: 10.13474/j.cnki.11-2246.2025.1018

• 学术研究 • 上一篇    

顾及周期性时序行为与社交关系的下一个兴趣点推荐

何璇1, 徐胜华2, 车向红2, 王琢璐1, 唐晴2, 杨澜2   

  1. 1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000;
    2. 中国测绘科学研究院, 北京 100036
  • 收稿日期:2025-01-21 发布日期:2025-10-31
  • 通讯作者: 徐胜华。E-mail:xushh@casm.ac.cn
  • 作者简介:何璇(2000-),男,硕士生,主要研究方向为兴趣点推荐。E-mail:lntuhexuan@163.com
  • 基金资助:
    国家重点研发计划(2022YFB3904202)

Considering periodic temporal behaviors and social relationships for next point-of-interest recommendation

HE Xuan1, XU Shenghua2, CHE Xianghong2, WANG Zhuolu1, TANG Qing2, YANG Lan2   

  1. 1. School of Surveying, Mapping and Geography, Liaoning Technology University, Fuxin 123000, China;
    2. Chinese Academy of Surveying & Mapping, Beijing 100036, China
  • Received:2025-01-21 Published:2025-10-31

摘要: 下一个兴趣点推荐是基于地理位置社交网络的重要应用之一。针对现有方法中用户周期性时序行为表达不足、社会关系挖掘不充分的问题,本文提出了一种顾及周期性时序行为与社交关系的下一个兴趣点推荐方法。从用户的短期、周期和长期3种时间粒度下的签到序列分析用户的行为规律,提取周期性时序行为特征;根据签到记录的重叠性和用户间好友相似度挖掘用户间的社交关系提取双层社交特征,引入自适应权重分配策略进行特征融合,计算出用户对兴趣点的偏好得分,根据得分排序为用户推荐下一个兴趣点。在新浪微博数据集(上海地区)和Foursquare(纽约地区)数据集上进行试验。结果表明,本文方法在命中率和归一化折现累积收益等指标上取得了显著改进。

关键词: 下一个兴趣点推荐, 时序行为, 注意力机制, 社交关系

Abstract: Next point-of-interest (POI)recommendation is one of the key applications in geolocation-based social networks.To address the issues of inadequate representation of users' cyclic temporal behavior and insufficient mining of social relationships in existing methods, this paper proposes a POI recommendation method that integrates both cyclic temporal behavior and social relationships.We analyze users' behavioral patterns from their check-in sequences across three time granularities: short-term, periodic, and long-term, and extract cyclical time-sequential behavioral features.Additionally, we mine social relationships between users by examining the overlap in their check-in records and the similarity of their friends, extracting dual-layer social features.The method introduces feature fusion with an adaptive weight allocation strategy and calculates users' preference scores for POIs.Based on these scores, the next POI is recommended to the user.Experimental results on the Sina Weibo (Shanghai)and Foursquare (New York)datasets demonstrate that the proposed method significantly improves hit rate (HR)and normalized discounted cumulative gain (NDCG).

Key words: next point of interest recommendation, sequential behavior, attention mechanism, social relationships

中图分类号: