测绘通报 ›› 2019, Vol. 0 ›› Issue (6): 24-28.doi: 10.13474/j.cnki.11-2246.2019.0178

• 学术研究 • 上一篇    下一篇

顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法

沈宇臻1, 官云兰2, 杨禄3, 刘承承4, 严小芳5   

  1. 1. 广州城市规划技术开发服务部, 广东 广州 510030;
    2. 东华理工大学测绘工程学院, 江西 南昌 330013;
    3. 桂林理工大学测绘地理信息学院, 广西 桂林 541004;
    4. 成都理工大学地球科学学院, 四川 成都 610059;
    5. 兴宁市国土资源局, 广东 兴宁 514500
  • 收稿日期:2018-11-29 出版日期:2019-06-25 发布日期:2019-07-01
  • 通讯作者: 官云兰。E-mail:guan8098@163.com E-mail:guan8098@163.com
  • 作者简介:沈宇臻(1995-),男,硕士,主要研究方向为遥感图像处理。E-mail:syzshx@163.com
  • 基金资助:

    国家自然科学基金(41401437)

Hyperspectral image classification based on local and structural feature with sparse multinomial logistic regression

SHEN Yuzhen1, GUAN Yunlan2, YANG Lu3, LIU Chengcheng4, YAN Xiaofang5   

  1. 1. The Department of Guangzhou Urban Planning Technology Development Services, Guangzhou 510030, China;
    2. Faculty of Geomatics, East China University of Technology, Nanchang 330013, China;
    3. College of Geomatics and Geoinformation, GuiLin University of Technology, Guilin 541004, China;
    4. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China;
    5. Xingning Municipal Bureau of Land and Resources, Xingning 514500, China
  • Received:2018-11-29 Online:2019-06-25 Published:2019-07-01

摘要:

稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想。本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法。首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类。结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性。

关键词: 高光谱影像, 特征融合, 加权均值滤波, EMAPs, 稀疏多项式逻辑回归

Abstract:

Sparse multinomial logistic regression only uses spectral information in image classification.Therefore,the classification effect is poor. In this paper,a hyperspectral image classification method based on local and structural feature with sparse multinomial logistic regression is proposed. Firstly, weighted mean filter and extended multi attribute profiles are used to extract local and structural features of the original hyperspectral images. Then the weighted average feature level fusion is carried out to obtain more unique pixel feat ures.Finally,the fusion results are classified by sparse multinomial logistic regression.The results show that the proposed method has well classification effect and robustness.

Key words: hyperspectral image, feature fusion, weighted mean filter, extended multi-attribute profiles, sparse multinomial logistic regression

中图分类号: