测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 19-25.doi: 10.13474/j.cnki.11-2246.2025.0904

• 生态环境动态监测 • 上一篇    下一篇

基于机器学习的内蒙古地区SMAP L4土壤水分产品降尺度模型

边朝阳1, 黄方1, 何伟丙1, 张巧凤2, 芦童童1, 关皓1   

  1. 1. 电子科技大学资源与环境学院, 四川 成都 611731;
    2. 内蒙古师范大学地理科学学院, 内蒙古 呼和浩特 010022
  • 收稿日期:2025-01-20 发布日期:2025-09-29
  • 通讯作者: 黄方。E-mail:hfhbhzp@uestc.edu.cn
  • 作者简介:边朝阳(2001—),男,硕士生,研究方向为遥感应用与机器学习。E-mail:bian-cy2023@163.com
  • 基金资助:
    国家自然科学基金(42271390)

Downscaling model of SMAP L4 soil moisture product in Inner Mongolia region based on machine learning

BIAN Chaoyang1, HUANG Fang1, HE Weibing1, ZHANG Qiaofeng2, LU Tongtong1, GUAN Hao1   

  1. 1. School of Recourses and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China;
    2. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
  • Received:2025-01-20 Published:2025-09-29

摘要: 随着全球气候变暖的加剧,干旱灾害在内蒙古地区日益频发,对农牧业生产、生态环境和地区可持续发展构成严重威胁。土壤水分作为反映干旱灾害最直接的指标,对内蒙古地区的农牧业生产、生态环境具有重要影响,但目前获取高时空分辨率的土壤水分数据存在困难,传统监测方法难以满足需求。本文首先利用Google Earth Engine强大的云存储与计算能力,获取内蒙古地区长时序的Sentinel-1 SAR、SMAP L4、Landsat 8、MODIS LST、DEM等遥感数据,并进行预处理、统一时间尺度与空间分辨率等操作;然后通过相关性分析,筛选出与SMAP L4土壤水分相关性最大的降尺度因子,分别利用随机森林、支持向量机与分类回归树3种机器学习算法,结合筛选后的降尺度因子,开展土壤水分降尺度试验,得到研究区域1 km高空间分辨率与高精度的土壤水分数据;最后将降尺度结果与SMAP L4重采样数据及土壤水分公开数据集进行对比验证。结果表明,基于随机森林的降尺度模型结果平均R值高达0.84,平均MAE为0.049 m3/m3,且RMSE和ubRMSD均明显小于其他两种模型,在研究区具有最佳的降尺度效果。本文基于创新数据处理方法、精细降尺度因子筛选机制及多种机器学习算法对比应用,为内蒙古地区获取长时序、高分辨率、高精度土壤水分数据提供了有效方案,对当地农牧业、干旱监测和可持续发展具有重要意义。

关键词: GEE, 机器学习, SMAP, 土壤水分降尺度, 主被动微波遥感

Abstract: With the intensification of global warming,drought disasters are increasingly frequent in Inner Mongolia region,posing a serious threat to agricultural and animal husbandry production,ecological environment and regional sustainable development.Soil moisture,as the most direct indicator reflecting drought disasters,has a significant impact on agricultural and animal husbandry production and ecological environment in Inner Mongolia region.However,there are difficulties in obtaining soil moisture data with high temporal and spatial resolutions at present,and traditional monitoring methods are difficult to meet the demand.This study utilizes the powerful cloud storage and computing capabilities of Google Earth Engine to obtain long-time series remote sensing data including Sentinel-1 SAR,SMAP L4,Landsat 8,MODIS LST,DEM and other products of Inner Mongolia region,and performs preprocessing,unifying time scales and spatial resolutions.Through correlation analysis,downscaling factors with the greatest correlation with SMAP L4 soil moisture are selected.Random forest,support vector machine and classification and regression tree algorithms are respectively used,combined with the selected downscaling factors,to carry out soil moisture downscaling experiments and obtain soil moisture data with 1 km high spatial resolution and high accuracy in the study area.Finally,the downscaling results are compared and verified with SMAP L4 resampling data and public soil moisture datasets.The results show that the downscaling model based on random forest achieves an average R value of up to 0.84,an average MAE of 0.049 m3/m3,and both RMSE and ubRMSD are significantly smaller than the other two models,demonstrating the best downscaling performance in the study area.Based on innovative data processing methods,fine downscaling factor screening mechanisms,and comparative application of multiple machine learning algorithms,this paper provides an effective solution for obtaining long-term series,high-resolution,and high-precision soil moisture data in Inner Mongolia region,which is of great significance for local agriculture and animal husbandry,drought monitoring,and sustainable development.

Key words: GEE, machine learning, SMAP, soil moisture downscaling, active and passive microwave remote sensing

中图分类号: