测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 84-90.doi: 10.13474/j.cnki.11-2246.2025.0914

• 学术研究 • 上一篇    下一篇

基于神经网络优化Canny算子的海岸线提取方法

王玉, 李泽辰, 梁菘元, 石雪   

  1. 桂林理工大学测绘地理信息学院, 广西 桂林 541006
  • 收稿日期:2024-12-23 发布日期:2025-09-29
  • 通讯作者: 石雪。E-mail:shixue@glutedu.cn
  • 作者简介:王玉(1990—),女,博士,副教授,研究方向为遥感图像处理。E-mail:wangyu@glutedu.cn
  • 基金资助:
    广西自然科学基金(2022GXNSFBA035567);广西高校中青年教师科研基础能力提升项目(2024KY0813)

Coastline extraction method based on neural network optimized canny operator

WANG Yu, LI Zechen, LIANG Songyuan, SHI Xue   

  1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
  • Received:2024-12-23 Published:2025-09-29

摘要: 为准确且高效地提取合成孔径雷达 (SAR)图像的海岸线,本文提出一种基于神经网络优化Canny算子的海岸线提取算法。该算法结合神经网络和统计回归实现Canny算子中高斯滤波标准差、高和低阈值3个Canny参数(CaPP)最优值的自适应确定,以改进该算子。首先,利用神经网络模型对训练集进行训练,获得训练集中各SAR图像的CaPP最优值;然后,通过统计回归与择优准则,建立其与SAR图像均值、标准差的最优线性组合;最后,利用测试集进行试验验证。结果显示,该算法可自适应获取CaPP最优值,且测试集中海岸线提取结果的SSIM均值为0.912,总体精度和Kappa系数均值分别为98.55%和0.966 3,说明算法可通过自适应获取的CaPP最优值精准提取SAR图像海岸线。

关键词: 海岸线提取, SAR图像, Canny算法, 神经网络

Abstract: In order to accurately and efficiently extract coastlines from synthetic aperture radar images,this paper proposes a coastline extraction algorithm based on neural network-optimized Canny operator.The algorithm combines neural networks and statistical regression to adaptively determine the optimal values of the three Canny parameters that are Gaussian filter standard deviation,high threshold,and low threshold,in order to improve the Canny operatorly.Firstly,a neural network model is trained on the training set to obtain the optimal CaPP values for each SAR image.Then,statistical regression and optimization criteria are used to establish the optimal linear combination of CaPP and the SAR image's mean and standard deviation.Finally,the algorithm is experimentally verified using a test set.The experimental results show that the proposed algorithm can adaptively obtain the optimal CaPP values,with the SSIM mean of the coastline extraction results in the test set being 0.912,and the overall accuracy and Kappa coefficient means are 98.55%and 0.966 3,respectively.This demonstrates that the proposed algorithm can accurately extract the coastlines of SAR images by adaptively obtaining the optimal CaPP values.

Key words: coastline extraction, SAR images, Canny algorithm, neural network

中图分类号: