测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 25-31.doi: 10.13474/j.cnki.11-2246.2026.0105

• 学术研究 • 上一篇    下一篇

融合光学-雷达-物候特征的烟草种植区识别方法研究——以云南宣威为例

杨新茹1,2, 王勇2, 车向红2, 姜驰3, 孙擎4, 刘纪平2   

  1. 1. 西南交通大学地球科学与工程学院, 四川 成都 611756;
    2. 中国测绘科学研究院, 北京 100036;
    3. 福州大学空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350108;
    4. 中国气象科学研究院, 北京 100081
  • 收稿日期:2025-09-05 发布日期:2026-02-03
  • 作者简介:杨新茹(2001—),女,硕士,主要研究方向为地理空间大数据挖掘与分析。E-mail:TWO_ONE@my.swjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFD2302700);中国测绘科学研究院基本业务费(AR2416)

Detection of tobacco planting areas using fused optical-radar-phenological features: a case study of Xuanwei,Yunnan

YANG Xinru1,2, WANG Yong2, CHE Xianghong2, JIANG Chi3, SUN Qing4, LIU Jiping2   

  1. 1. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
    2. China Academy of Surveying and Mapping, Beijing 100036, China;
    3. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350108, China;
    4. China Academy of Meteorological Sciences, Beijing 100081, China
  • Received:2025-09-05 Published:2026-02-03

摘要: 精准的烟草种植分布和面积信息有助于高效配置烟草资源、科学优化种植管理与提高经济效益。针对目前作物分类研究大多聚焦于大宗作物,融合多源遥感数据的烟草种植区识别研究较为缺乏的问题。本文以云南省宣威市为研究区,基于野外实地调查样本和已有作物数据集,生成烟草/非烟草样本点,构建烟草Sentinel-1极化特征、Sentinel-2光谱/指数特征及物候特征。进而,采用随机森林算法进行特征优选与分类,探究用于烟草种植区识别的最佳特征组合方案,实现烟草种植区的精准识别。研究结果表明,融合Sentinel-1、Sentinel-2和物候3类数据且优选后的79个特征用于烟草识别精度最高,总体精度达到94.51%,Kappa系数为0.89,乡镇尺度识别面积与统计数据的相关系数(R2)为0.94。本文研究可为大区域、长时序烟草种植监测、精准管理与政策制定提供高效、可靠的技术支撑。

关键词: 烟草识别, Sentinel-1, Sentinel-2, 物候, 随机森林

Abstract: Accurate tobacco planting distribution and area information is helpful for efficient allocation of tobacco resources,scientific optimization of planting management and improvement of economic benefits.While existing crop classification research has largely concentrated on major crops,the identification of tobacco cultivation areas through the fusion of multi-source remote sensing data remains under-explored.In this study,Xuanwei city,Yunnan province was taken as the research area.Based on field survey samples and existing crop datasets,tobacco/non-tobacco sample points were generated,and Sentinel-1 polarization features,Sentinel-2 spectral/index features and growth phenology features of tobacco were constructed.Then,the random forest algorithm was used for feature selection and classification to explore the optimal feature combination scheme for tobacco planting area recognition and achieve accurate identification of tobacco planting areas.The results indicate that the optimal scheme of 79 features,derived from the fusion and selection of Sentinel-1,Sentinel-2,and phenological data,achieves the highest tobacco identification accuracy.The overall accuracy (OA) reaches 94.51%,the Kappa coefficient is 0.89,and the coefficient of determination (R2) is 0.94 between the identified area and statistical data at the township scale.This study provides efficient and reliable technical support for large-scale and long-term tobacco planting monitoring,precise management and policy formulation.

Key words: tobacco detection, Sentinel-1, Sentinel-2, phenology, random forest

中图分类号: