测绘通报 ›› 2022, Vol. 0 ›› Issue (4): 61-65.doi: 10.13474/j.cnki.11-2246.2022.0111

• 学术研究 • 上一篇    下一篇

膨胀卷积与金字塔表达的深度学习模型用于农村建筑物提取

王雪1, 梁珂2, 隋立春3, 钟棉卿4, 朱剑锋3   

  1. 1. 咸阳师范学院, 陕西 咸阳 712000;
    2. 自然资源部第一大地测量队, 陕西 西安 710054;
    3. 长安大学地质工程与测绘学院, 陕西 西安 710054;
    4. 陕西省地理空间信息工程技术研究中心, 陕西 西安 710199
  • 收稿日期:2021-05-10 出版日期:2022-04-25 发布日期:2022-04-26
  • 作者简介:王雪(1983-),女,博士生,讲师,主要研究方向为遥感图像处理、激光雷达数据处理。E-mail:178475464@qq.com
  • 基金资助:
    陕西省科技厅青年项目(2021JQ-819);咸阳师范学院科研基金项目(XSYK20013)

Rural buildings extraction based on deep learning model with dilated convolution and pyramid representation

WANG Xue1, LIANG Ke2, SUI Lichun3, ZHONG Mianqing4, ZHU Jianfeng3   

  1. 1. Xianyang Normal University, Xianyang 712000, China;
    2. The First Geodetic Surveying Brigade of Ministry of Natural Resources, Xi'an 710054, China;
    3. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    4. Shaanxi Geospatial Information Engineering Technology Research Center, Xi'an 710199, China
  • Received:2021-05-10 Online:2022-04-25 Published:2022-04-26

摘要: 由于农村建筑物结构多样、空间分布复杂等特征,自动提取面临较多困难。针对该问题,本文提出采用膨胀卷积和金字塔池化表达的神经网络模型用于遥感影像中农村建筑物自动提取。在膨胀卷积神经网络模块中,通过改变孔尺寸的大小,获取不同感受野的特征信息;在金字塔表达方面,每个模块输入不同尺度的信息,且同时下采样的倍率也不同,获取多维的金字塔尺度特征;最终将提取的浅层及深层尺度特征信息进行融合,构建一个改进的适用于农村建筑物目标自动提取的深度学习模型。试验结果表明,与FCN-8s和DeepLab模型提取的结果相比,本文方法在农村建筑物提取中表现较好的性能,提取精度明显提高,且更好保留了目标边界细节信息,减少了噪声。

关键词: 深度学习, 膨胀卷积, 金字塔表达, 农村建筑物提取, 遥感影像

Abstract: Automatic extraction rural buildings faces many difficulties because of the diverse structure and complex spatial distribution, etc. Aiming at this problem, this paper proposes a neural network model with dilated convolution and pyramid representation for automatic extracting rural buildings in remote sensing images. In the dilated convolution neural network module, the feature information with different receptive fields is obtained by changing the size of the dilated hole. In the pyramid representation, each module inputs different scale information, and the rate of down sampling is also different, which obtains multi-dimensional pyramid scale features. Finally, the model is fused shallow feature and deep feature to construct improved deep learning model for rural building automatic extraction. Compared with FCN-8s and DeepLab models, the experiment results show that this method performs better in the extraction of rural buildings. The accuracy of the extraction is obviously improved, the boundary details are better retention and the noise is little.

Key words: deep learning, dilated convolution, pyramid representation, rural buildings extraction, remote sensing images

中图分类号: