[1] TANG J,LI S,LIU P. A review of lane detection methods based on deep learning[J]. Pattern Recognition,2020(1) 1-15. [2] LIANG Dun,GUO Yuanchen,ZHANG Shaokui,et al. Lane detection: a survey with new results[J]. Journal of Computer Science & Technology,2020,35(3): 493-505. [3] CHEN Weiwei,WANG Weixing,WANG K,et al. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: a review[J]. Journal of Traffic and Transportation Engineering (English Edition),2020,7(6): 748-774. [4] DING L,ZHANG H Y,XIAO J S,et al. A lane detection method based on semantic segmentation[J]. CMES-Computer Modeling in Engineering & Sciences,2020,122(3): 1039-1053. [5] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014-03-12[2023-03-10].https://arxiv.org/abs/1409.1556.pdf. [6] XIONG H,YU D M,LIU J X,et al. Fast and robust approaches for lane detection using multi-camera fusion in complex scenes [J]. IET Intelligent Transport Systems,2020,14(12): 1582-1593. [7] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12): 2481-2495. [8] PIZZATI F,ALLODI M,BARRERA A,et al. Lane detection and classification using cascaded CNNs[EB/OL]. 2019-03-11[2023-03-10].https://arxiv.org/abs/1907.01294.pdf. [9] ZOU Qin,JIANG Hanwen,DAI Qiyu,et al. Robust lane detection from continuous driving scenes using deep neural networks[J].IEEE Transactions on Vehicular Technology,2020,69(1):41-54. [10] NEVEN D,BRABANDERE B D,GEORGOULIS S,et al. Towards end-to-end lane detection: an instance segmentation approach [C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE,2018: 286-291. [11] DE BRABANDERE B,NEVEN D,VAN GOOL L. Semantic instance segmentation with a discriminative loss function[EB/OL]. 2017-03-05[2023-03-20]. https://arxiv.org/abs/1708.02551.pdf. [12] KO Y,LEE Y,AZAM S,et al. Key points estimation and point instance segmentation approach for lane detection [J]. IEEE Transactions on Intelligent Transportation Systems,2021,23(7): 8949-8958. [13] XU Hang,WANG Shaoju,CAI Xinyue,et al. CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending[EB/OL]. 2020-02-07[2023-03-30]. https://arxiv.org/abs/2007.12147.pdf. [14] 周经美,王钰,宁航,等. 面向多元场景结合GLNet的车道线检测算法[J]. 中国公路学报,2021,34(7): 118-127. [15] HUANG B,ZHENG J,GIANNAROU S,et al. H-Net: unsupervised attention-based stereo depth estimation leveraging epipolar geometry[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Orleans:IEEE,2020. [16] TABELINI L,BERRIEL R,PAIXIAO T M,et al. Keep your eyes on the lane: Real-time attention-guided lane detection[C]//Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Nashville:IEEE,2021. [17] LI X,ZHANG Y,SHEN C,et al. RESA: recurrent feature-Shift aggregator for lane detection[C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).[S.l.]:IEEE,2019. [18] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]:IEEE,2016. [19] WOO S,PARK J,LEE J Y,et al. CBAM: convolutional block attention module[EB/OL]. 2018-03-05[2023-03-31].https://arxiv.org/abs/1807.06521.pdf. [20] QIN Z,WANG H,LI X. Ultra fast structure-aware deep lane detection[C]// Proceedings of 2020 European Conference on Computer Vision (ECCV).[S.l.]:Springer,2020. |