测绘通报 ›› 2025, Vol. 0 ›› Issue (4): 51-57,62.doi: 10.13474/j.cnki.11-2246.2025.0409

• 学术研究 • 上一篇    

基于SBAS-InSAR技术的地表沉降时间序列分析与预测

邵亚璇1, 马晶1, 韩莉莉2, 姚冠宇1   

  1. 1. 长春工程学院勘查与测绘工程学院, 吉林 长春 130021;
    2. 吉林省国源建设工程设计有限公司, 吉林 长春 130021
  • 收稿日期:2024-08-26 发布日期:2025-04-28
  • 通讯作者: 马晶。E-mail:majing615@163.com
  • 作者简介:邵亚璇(2001—),女,硕士生,主要研究方向为InSAR技术监测应用。E-mail:2629472645@qq.com
  • 基金资助:
    吉林省自然科学基金(YDZJ202201ZYTS499)

Time series analysis and prediction of surface subsidence based on SBAS-InSAR technology

SHAO Yaxuan1, MA Jing1, HAN Lili2, YAO Guanyu1   

  1. 1. School of Surveying and Mapping Engineering, Changchun Institute of Technology, Changchun 130021, China;
    2. Jilin Guoyuan Construction Engineering Design Co., Ltd., Changchun 130021, China
  • Received:2024-08-26 Published:2025-04-28

摘要: 万柏林区被太原市列为地质灾害高易发区之一。为探究太原市万柏林区的地表沉降情况,针对传统测量方法难以获取长时序、大范围的地表形变信息的问题,本文以太原市万柏林区为研究区,基于36景降轨Sentinel-1A影像数据,利用SBAS-InSAR技术获取了研究区2017年7月—2020年6月的累计沉降量及变化速率等形变数据,并分别采用LSTM神经网络模型和GM(1,1)模型对地表特征点的监测结果进行模拟预测。研究结果表明:①太原市万柏林地区出现自东向西沉降愈加严重的不均匀现象,最明显的区域位于西部磺厂村附近,最大沉降速率可达-60 mm/a;②GM(1,1)模型无法对沉降监测期间波动幅度大的地表特征点进行有效预测,LSTM神经网络模型能较好地实现城区沉降预测,且预测精度更高。

关键词: SBAS-InSAR技术, 时序分析, LSTM, GM(1,1)

Abstract: Wanbailin district is listed as one of the high-risk areas of geological disasters in Taiyuan city.In order to explore the surface subsidence in Wanbailin district of Taiyuan city,it is difficult to obtain long-term and large-scale surface deformation information by traditional measurement methods. In this paper,Wanbailin district of Taiyuan city is taken as the research area. Based on 36 scenes of Sentinel-1A image data,SBAS-InSAR technology is used to obtain the cumulative settlement and change rate of the study area from July 2017 to June 2020.LSTM neural network model and GM(1,1) model are used to simulate and predict the monitoring results of surface feature points. The results show that: ①The uneven settlement of Wanbailin area in Taiyuan city is more and more serious from east to west. The most obvious area is located near the western factory village,and the maximum settlement rate can reach -60 mm/a; ②The GM(1,1) model cannot effectively predict the surface feature points with large fluctuations during the settlement monitoring period. The LSTM neural network model can better realize the urban settlement prediction,and the prediction accuracy is higher.

Key words: SBAS-InSAR technology, time series analysis, LSTM, GM(1,1)

中图分类号: