[1] BERARDINO P,FORNARO G,LANARI R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383. [2] WASOWSKI J,BOVENGA F.Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry:Current issues and future perspectives[J].Engineering Geology,2014,174:103-138. [3] PEPE A,MANZO M,CASU F,et al.Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique:an overview[J].Annals of Geophysics,2009,51(1):5466-7180. [4] 雷倩芳.基于时序InSAR技术的上海城区地表沉降监测与预测分析[D].抚州:东华理工大学,2022. [5] 马飞.矿区沉降InSAR监测与预测方法研究[D].西安:长安大学,2020. [6] 徐子兴,季民,张过,等.基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J].自然资源遥感,2022,34(2):20-29. [7] 张天.基于SBAS-InSAR城市地表沉降的预测建模及原因分析[D].北京:北京建筑大学,2020. [8] WANG Rong,FENG Yongjiu,TONG Xiaohua,et al.Large-scale surface deformation monitoring using SBAS-InSAR and intelligent prediction in typical cities of Yangtze River Delta[J].Remote Sensing,2023,15(20):4942. [9] GUO Hengliang,YUAN Yonghao,WANG Jinyang,et al.Large-scale land subsidence monitoring and prediction based on SBAS-InSAR technology with time-series Sentinel-1A satellite data[J].Remote Sensing,2023,15(11):2843. [10] 丁伟,陈展鹏,许兵,等.基于SBAS-InSAR技术的广州市白云区长时序地表形变监测与成因分析[J].测绘通报,2023(4):167-171. [11] 叶萍萍.基于SBAS-InSAR的城市地表形变监测技术研究:以兰州新区城区为例[J].矿山测量,2020,48(6):80-83. [12] 李红梅,郭在洁,刘庆施,等.基于SBAS-InSA R技术的青岛地铁1号线西海岸新区段地表沉降监测与分析[J].西南大学学报(自然科学版),2022,44(2):146-153. [13] 曾学宏,赵义花.利用SBAS-InSAR技术分析西宁市地面沉降监测及驱动因素[J].测绘通报,2022(6):137-142. [14] GERS F A,SCHMIDHUBER J A,CUMMINS F A.Learning to forget:continual prediction with LSTM[J].Neural Computation,2000,12(10):2451-2471. [15] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [16] 刘青豪,张永红,邓敏,等.大范围地表沉降时序深度学习预测法[J].测绘学报,2021,50(3):396-404. [17] 陈媛媛,赵秉琨,王慧,等.基于LSTM模型的时序InSAR地表形变预测[J].人民长江,2024,55(3):146-152. [18] 肖海平,夏益强,刘小生,等.融合SBAS-InSAR技术与TSO-LSTM模型的矿区地表沉降预测方法[J].金属矿山,2023(1):126-133. [19] 李如仁,孙加瑶.融合SBAS-InSAR与GS-LSTM的尾矿库沉降监测与预测[J].金属矿山,2023(1):102-109. [20] CHEN Bingqian,YU Hao,ZHANG Xiang,et al.Time-varying surface deformation retrieval and prediction in closed mines through integration of SBAS InSAR measurements and LSTM algorithm[J].Remote Sensing,2022,14(3):788. [21] 王华,李素敏,袁利伟,等.基于MT-InSAR和灰色预测模型的金属矿区地表变形研究[J].化工矿物与加工,2022,51(4):45-50. [22] 吴伟强.基于CNN-LSTM的采空区地表沉降预测[D].绵阳:西南科技大学,2022. [23] 毕凌宇,孙承志,乔申.基于SBAS-InSAR与MA-PSO-BP的南京河西地区地表沉降监测及预测分析[J].测绘通报,2024(4):48-53. [24] 丁帮宁,黄海兰,邹进贵.基于SBAS-InSAR技术的武汉市地表形变监测研究[J].测绘通报,2022(S2):81-84. [25] 王润泽,费敏,梁世川,等.基于SBAS-InSAR技术监测西安市地表形变特征[J].测绘通报,2023(1):173-178. [26] LIU Yahong,ZHANG Jin.Integrating SBAS-InSAR and AT-LSTM for time-series analysis and prediction method of ground subsidence in mining areas[J].Remote Sensing,2023,15(13):3409. [27] 李相如,苏超,袁荣耀.时间序列重构改进LSTM的大坝变形预测模型[J].水力发电,2024,50(6):67-71. [28] 陈毅,何毅,张立峰,等.长短时记忆网络TS-InSAR地表形变预测[J].遥感学报,2022,26(7):1326-1341. |