[1] 李德仁,王长委,胡月明,等.遥感技术估算森林生物量的研究进展[J].武汉大学学报(信息科学版),2012,37(6): 631-635. [2] FAO.The State of the World's Forests 2024—Forest-sector innovations towards a more sustainable future[M].Rome: Food and Agriculture Organization of the United Nations,2024. [3] DUNCANSON L,DISNEY M,ARMSTON J,et al.Aboveground woody biomass product validation good practices protocol[M].Rome: Committee on Earth Observation Satellites(CEOS),2021. [4] LU D,CHEN Q,WANG G,et al.A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J].International Journal of Digital Earth,2016,9(1): 63-105. [5] 梁顺林,李小文,王锦地,等.定量遥感: 理念与算法[M].北京: 科学出版社,2013. [6] BLACKARD J A,FINCO M V,HELMER E H,et al.Mapping U.S.forest biomass using nationwide forest inventory data and moderate resolution information[J].Remote Sensing of Environment,2008,112(4): 1658-1677. [7] 方精云,郭兆迪,朴世龙,等.1981—2000年中国陆地植被碳汇的估算[J].中国科学(D辑: 地球科学),2007,37(6): 804-812. [8] 龚威,史硕,陈必武,等.对地观测高光谱激光雷达发展及展望[J].遥感学报,2021,25(1): 501-513. [9] 罗绍龙,舒清态,余金格,等.基于序贯高斯条件模拟的GEDI数据联合Landsat 8反演森林地上生物量[J].林业科学研究,2024,37(3): 49-60. [10] DUNCANSON L,KELLNER J R,ARMSTON J,et al.Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation(GEDI)LiDAR mission[J].Remote Sensing of Environment,2022,270: 112845. [11] 郝晴,黄昌.森林地上生物量遥感估算研究综述[J].植物生态学报,2023,47(10): 1356-1374. [12] 庞勇,李增元,余涛,等.森林碳储量遥感卫星现状及趋势[J].航天返回与遥感,2022,43(6): 1-15. [13] HYDE P,NELSON R,KIMES D,et al.Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR,SAR and InSAR[J].Remote Sensing of Environment,2007,106(1): 28-38. [14] SHENDRYK Y.Fusing GEDI with earth observation data for large area aboveground biomass mapping[J].International Journal of Applied Earth Observation and Geoinformation,2022,115: 103108. [15] YAN Xingguang,LI Jing,SMITH A R,et al.Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models[J].International Journal of Digital Earth,2023,16(2): 4471-4491. [16] 郭庆华,苏艳军,胡天宇,等.激光雷达森林生态应用: 理论、方法及实例[M].北京: 高等教育出版社,2018. [17] JORDAN M I,MITCHELL T M.Machine learning: trends,perspectives,and prospects[J].Science,2015,349(6245): 255-260. [18] FAO.2020 年全球森林资源评估[M].[S.l.]:粮农组织,2021. [19] DUBAYAH R O J.ARMSTON,et al.GEDI L4B gridded aboveground biomass density,Version 2[EB/OL].[2025-04-20].https://doi.org/10.3334/ORNLDAAC/ 2056. [20] LIU Aobo,CHENG Xiao,CHEN Zhuoqi.Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals[J].Remote Sensing of Environment,2021,264: 112571. |