测绘通报 ›› 2026, Vol. 0 ›› Issue (1): 65-71.doi: 10.13474/j.cnki.11-2246.2026.0111

• 学术研究 • 上一篇    下一篇

联合ALOS-2和Sentinel-1的复杂山区潜在滑坡识别

曹芮菡1, 李新2, 周定杰3, 喜文飞1,4,5, 黄广才6,7, 王瑞亭1, 郭蓁1   

  1. 1. 云南师范大学地理学部, 云南 昆明 650500;
    2. 云南省地图院, 云南 昆明 650500;
    3. 云南省测绘工程院, 云南 昆明 650500;
    4. 云南省高原地理过程与环境变化重点实验室, 云南 昆明 650500;
    5. 云南省高校高烈度地震山区交通走廊工程地质病害早期快速判识与防控重点实验室, 云南 昆明 650093;
    6. 贵州省地质调查院, 贵州 贵阳 550081;
    7. 自然资源部基岩区矿产资源勘查工程技术创新中心, 贵州 贵阳 550081
  • 收稿日期:2025-01-21 发布日期:2026-02-03
  • 通讯作者: 喜文飞。E-mail:wenfeixi@ynnu.edu.cn
  • 作者简介:曹芮菡(2001—),女,硕士生,研究方向为InSAR滑坡灾害监测。E-mail:962672526@qq.com
  • 基金资助:
    云南省科技计划重点项目(202401AS070638);贵州省科技厅基础研究计划(自然科学类)(黔科合基础-ZK〔2023〕一般193);2025年度贵州省基础研究计划(自然科学)面上项目(黔科合基础-ZK〔2025〕面上 013);高层次科技人才及创新团队选拔专项(202305AS350003)

Identification of potential landslides in complex mountainous areas using combine ALOS-2 and Sentinel-1 data

CAO Ruihan1, LI Xin2, ZHOU Dingjie3, XI Wenfei1,4,5, HUANG Guangcai6,7, WANG Ruiting1, GUO Zhen1   

  1. 1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China;
    2. Map Institute of Yunnan Province, Kunming 650500, China;
    3. Surveying and Mapping Engineering Institute of Yunnan Province, Kunming 650500, China;
    4. Key Laboratory of Highland Geographic Processes and Environmental Change in Yunnan Province, Kunming 650500, China;
    5. Key Laboratory of Early Rapid Identification, Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province, Kunming 650093, China;
    6. Guizhou Institute of Geological Survey, Guiyang 550081, China;
    7. Engineering Technology Innovation Center of Mineral Resources Explorations in Bedrock Zones, Minisity of Natural Resources, Guiyang 550081, China
  • Received:2025-01-21 Published:2026-02-03

摘要: 滑坡灾害是一种严重的自然灾害,给人民生命财产安全和生态环境带来重大威胁。针对单一SAR数据识别潜在滑坡时不能较好地顾及空间和时间分辨率的问题,本文结合ALOS-2数据在一定植被覆盖度区域有较强穿透性、Sentinel-1数据具有较高的时间分辨率的特点,识别潜在滑坡灾害;并以贵州某复杂植被山区为例,利用SBAS-InSAR技术进行试验。结果表明,研究区ALOS-2和Sentinel-1数据的地表形变速率范围分别为-125.34~46.01和-159.42~124.44 mm/a;共识别出48处新增滑坡,两者的互补性显著提高了滑坡识别的空间覆盖度与适用性。本文为滑坡灾害的早期识别和防灾减灾提供了技术支持。

关键词: 滑坡灾害, 植被覆盖度, SBAS-InSAR, 复杂植被山区

Abstract: Landslide disasters are a severe natural hazard,posing significant threats to human life,property safety,and the ecological environment.The identification of potential landslides using a single SAR dataset often fails to adequately address the trade-off between spatial resolution and temporal resolution.This study integrates the strong penetration capability of ALOS-2 data in areas with moderate vegetation cover and the high temporal resolution of Sentinel-1 data to identify potential landslide hazards.Taking a complex vegetated mountainous region in Guizhou as a case study,the SBAS-InSAR technique is applied for experimentation.The results indicate that the surface deformation rates in the study area ranged from -125.34 to 46.01 mm/a for ALOS-2 data and from -159.42 to 124.44 mm/a for Sentinel-1 data.A total of 48 new landslide hazards are identified,with the complementary strengths of the two datasets significantly enhancing the spatial coverage and applicability of landslide identification.This study provides technical support for the early detection of landslide hazards and disaster prevention and mitigation efforts.

Key words: landslide disasters, fractional vegetation cover, SBAS-InSAR, complex vegetated mountainous areas

中图分类号: