[1] KANG Z, YANG J, YANG Z, et al.A review of techniques for 3D reconstruction of indoor environments[J].International Journal of Geo-Information, 2020, 9(5):1-31. [2] CHOI J, CHOI J, KIM I.Development of BIM-based evacuation regulation checking system for high-rise and complex buildings[J].Automation in Construction, 2014, 46:38-49. [3] TAIRA H, OKUTOMI M, SATTLER T, et al.InLoc:indoor visual localization with dense matching and view synthesis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4):1293-1307. [4] 杨必胜, 董震.点云智能研究进展与趋势[J].测绘学报, 2019, 48(12):1575-1585. [5] BELLO S A, YU SHANGSHU, WANG CHENG.Review:deep learning on 3D point clouds[J].Remote Sensing, 2020, 12(11):1729. [6] LI B S, CEN H Y, BAO Y P, et al.Edge detection algorithm for point cloud based on rolling-circle[J].Computer Engineering and Design, 2013, 34(5):1836-1840. [7] XU W, KANG Z, JIANG T.Segmentation approach for terrestrial point clouds based on the integration of graph theory and region growing[C]//Proceedings of 2009 Joint Urban Remote Sensing Event.[S.l.]:IEEE, 2009. [8] ZHAN Q, YU L, LIANG Y.A point cloud segmentation method based on vector estimation and color clustering[C]//Proceedings of the 2nd International Conference on Information Science and Engineering.Hangzhou:IEEE, 2010. [9] 李宝顺, 岑红燕, 包亚萍, 等.基于平面提取的点云数据分割算法[J].计算机应用与软件, 2014, 31(7):145-148. [10] WU BICHEN, WAN A, YUE XIANGYU, et al.SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[EB/OL].[2022-03-02].https://arxiv.org/abs/1710.07368. [11] WANG F, ZHUANG Y, GU H, et al.OctreeNet:A novel sparse 3D convolutional neural network for real-time 3D outdoor scene analysis[J].IEEE Transactions on Automation Science and Engineering, 2020, 17(2):735-747. [12] FENG Y, ZHANG Z, ZHAO X, et al.GVCNN:group-view convolutional neural networks for 3d shape recognition[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Lake City:IEEE, 2018. [13] QI C R, SU H, MO K, et al.PointNet:deep learning on point sets for 3D segmentation and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE, 2017. [14] QI C R, YI L, SI H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.[S.l.]:NIPS, 2017. [15] HU Q, YANG B, XIE L, et al.RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2020. [16] TARSHA-KURDI F, LANDES T, GRUSSENMEYER P.Hough-transform and extended ransac algorithms for automatic detection of 3D building roof planes from lidar data[C]//Proceedings of ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007.Espoo:[s.n.], 2007. [17] WU Y X, LI F, LIU F F, et al.Point cloud segmentation using Euclidean cluster extraction algorithm with the smoothness[J].Meas Control Technol, 2016, 35(3):36-38. [18] 王涛, 王文举, 蔡宇.基于深度学习的三维点云语义分割方法研究[J].计算机工程与应用, 2021, 57(23):18-26. |