测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 100-105.doi: 10.13474/j.cnki.11-2246.2025.0517

• 学术研究 • 上一篇    下一篇

BiLSTM-Chan算法在超宽带室内定位中的应用

赵辰瑞, 连增增, 田亚林, 贺刘辉, 陈浩, 王鹏辉, 王孟奇   

  1. 河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
  • 收稿日期:2024-10-09 发布日期:2025-06-05
  • 作者简介:赵辰瑞(2002—),男,硕士生,研究方向为室内定位。E-mail:212304010040@home.hpu.edu.cn
  • 基金资助:
    河南省高校基本科研业务费专项资金(NSFRF230405);河南理工大学2017年度博士基金(B2017-10);河南理工大学青年骨干教师资助计划(2022XQG-08);河南省科技攻关项目(242102320070);国家自然科学基金(42374029);河南理工大学测绘科学与技术“双一流”学科创建项目(CHXKYXBS05)

Application of BiLSTM-Chan algorithm in UWB indoor positioning

ZHAO Chenrui, LIAN Zengzeng, TIAN Yalin, HE Liuhui, CHEN Hao, WANG Penghui, WANG Mengqi   

  1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2024-10-09 Published:2025-06-05

摘要: 针对UWB在室内定位中因人员走动引起的非视距误差(NLOS),以及常规神经网络训练后基站不能移动的问题,本文提出了一种基于融合双向长短期记忆神经网络的Chan算法(BiLSTM-Chan)。该算法首先通过双向长短期记忆神经网络处理UWB时序数据,给出超宽带(UWB)时序数据的误差修正值,然后依靠Chan算法计算得到最终三维坐标。双向长短期记忆神经网络能够综合过去与未来的信息,更好地捕捉到时序数据中的特征信息。在网络中加入注意力机制能够帮助网络分析BiLSTM层提取的关键特征,让神经网络的预测更加准确。本文通过仿真试验和实测试验,对BiLSTM算法、Chan算法和最小二乘(LS)算法进行了对比。结果表明,相比于BiLSTM、Chan和LS算法,BiLSTM-Chan算法的精度分别提高了30.66%、61.78%和61.96%。

关键词: 室内定位, 超宽带, 双向长短期记忆神经网络, 注意力机制, 深度学习

Abstract: To address the non-line-of-sight (NLOS) errors caused by people moving in indoor positioning using UWB, as well as the issue of immovable base stations after training conventional neural networks, this paper proposes an Chan algorithm based on bidirectional long short-term memory neural networks (BiLSTM-Chan). This algorithm processes UWB timing data through a bidirectional LSTM to provide error correction values for UWB timing data, and then calculates the final 3D coordinates using the Chan method. The bidirectional LSTM is capable of synthesizing past and future information, capturing the characteristics in the timing data more effectively. Integrating attention mechanisms into the network can aid in analyzing key features extracted by the BiLSTM layer, making the neural network's predictions more accurate. This paper compares the proposed method through simulation experiments and real-world experiments with the BiLSTM algorithm, Chan algorithm, and the LS algorithm. The real-world experiments demonstrate that compared to the BiLSTM, Chan, and LS algorithms, the accuracy of BiLSTM-Chan algorithm respectively improved by 30.66%, 61.78%, and 61.96%.

Key words: indoor positioning, ultra-wideband, bidirectional long short-term memory neural network, attention mechanism, deep learning

中图分类号: